Skip to main content
Log in

Optimizing target control of the vessel rich group with volatile anesthetics

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The ability to monitor the inspired and expired concentrations of volatile anesthetic gases in real time makes these drugs implicitly targetable. However, the end-tidal concentration only represents the concentration within the brain and the vessel rich group (VRG) at steady state, and very poorly approximates the VRG concentration during common dynamic situations such as initial uptake and emergence. How should the vaporization of anesthetic gases be controlled in order to optimally target VRG concentration in clinical practice? Using a generally accepted pharmacokinetic model of uptake and redistribution, a transfer function from the vaporizer setting to the VRG is established and transformed to the time domain. Targeted actuation of the vaporizer in a time-optimal manner is produced by a variable structure, sliding mode controller. Direct mathematical application of the controller produces rapid cycling at the limits of the vaporizer, further prolonged by low fresh gas flows. This phenomenon, known as “chattering”, is unsuitable for operating real equipment. Using a simple and clinically intuitive modification to the targeting algorithm, a variable low-pass boundary layer is applied to the actuation, smoothing discontinuities in the control law and practically eliminating chatter without prolonging the time taken to reach the VRG target concentration by any clinically significant degree. A model is derived for optimum VRG-targeted control of anesthetic vaporizers. An alternate and further application is described, in which deliberate perturbation of the vaporization permits non-invasive estimation of parameters such as cardiac output that are otherwise difficult to measure intra-operatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta DK, Eger EI. Inhaled anesthesia: the original closed-loop drug administration paradigm. Clin Pharmacol Ther. 2008;84(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  2. Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26(6):756–63.

    Article  PubMed  Google Scholar 

  3. Sieber TJ, Frei CW, Derighetti M, Feigenwinter P, Leibundgut D, Zbinden AM. Model-based automatic feedback control versus human control of end-tidal isoflurane concentration using low-flow anaesthesia. Br J Anaesth. 2000;85(6):818–25.

    Article  CAS  PubMed  Google Scholar 

  4. Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64(11):1229–35.

    Article  CAS  PubMed  Google Scholar 

  5. Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bailey JM, Shafer SL. A simple analytical solution to the three-compartment pharmacokinetic model suitable for computer-controlled infusion pumps. IEEE Trans Biomed Eng. 1991;38(6):522–5.

    Article  CAS  PubMed  Google Scholar 

  7. Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20(2):147–69.

    Article  CAS  PubMed  Google Scholar 

  8. Zwart A, Seagrave RC, Van Dieren A. Ventilation-perfusion ratio obtained by a noninvasive frequency response technique. J Appl Physiol. 1976;41(3):419–24.

    Article  CAS  PubMed  Google Scholar 

  9. Ascher UM, Petzold LR. Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics; 1998.

    Book  Google Scholar 

  10. Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69(3):370–3.

    Article  CAS  PubMed  Google Scholar 

  11. Heffernan PB, Gibbs JM, McKinnon AE. Teaching the uptake and distribution of halothane. A computer simulation program. Anaesthesia. 1982;37(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  12. Garfield JM, Paskin S, Philip JH. An evaluation of the effectiveness of a computer simulation of anaesthetic uptake and distribution as a teaching tool. Med Educ. 1989;23(5):457–62.

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy RR, French RA, Gilles S. The effect of a model-based predictive display on the control of end-tidal sevoflurane concentrations during low-flow anesthesia. Anesth Analg. 2004;99(4):1159–63.

    Article  CAS  PubMed  Google Scholar 

  14. Kuo AS, Vijjeswarapu MA, Philip JH. Incomplete spontaneous recovery from airway obstruction during inhaled anesthesia induction: a computational simulation. Anesth Analg. 2016;122(3):698–705.

    Article  CAS  PubMed  Google Scholar 

  15. Stroud KA. Laplace transforms: programmes and problems. New York: Wiley; 1973. ISBN 0470834153.

    Google Scholar 

  16. Jenkins M, Traub JF. A three-stage algorithm for real polynomials using quadratic iteration. SIAM J Num Anal. 1970;7(4):545–66.

    Article  Google Scholar 

  17. Garcia CE, Prett DM, Morari M. Model predictive control: theory and practice—a survey. Automatica. 1989;25(3):335–48.

    Article  Google Scholar 

  18. DeCarlo RAZ, Drakunov SH, S.V. Variable Structure, Sliding-Mode Controller Design. In: Levine WS, The Control Handbook. New York, NY: IEEE Press; 1996.

    Google Scholar 

  19. Sonneborn L, Van Vleck F. The bang-bang principle for linear control systems. J Soc Ind Appl Math A. 1964;2(2):151–9.

    Article  Google Scholar 

  20. Hung JY, Gao W, Hung JC. Variable structure control: a survey. IEEE Trans Industr Electron. 1993;40(1):2–22.

    Article  Google Scholar 

  21. Tseng ML, Chen MS. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian Journal of Control. 2010;12(3):392–8.

    Article  Google Scholar 

  22. Draper NR, Smith H. Applied regression analysis. Wiley series in probability and mathematical statistics. 2d ed. New York: Wiley; 1981.

    Google Scholar 

  23. Chatterjee S, Hadi AS. (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci. 1:379–93.

    Article  Google Scholar 

  24. Struys MM, Kalmar AF, De Baerdemaeker LE, Mortier EP, Rolly G, Manigel J, Buschke W. Time course of inhaled anaesthetic drug delivery using a new multifunctional closed-circuit anaesthesia ventilator. In vitro comparison with a classical anaesthesia machine. Br J Anaesth. 2005;94(3):306–17.

    Article  CAS  PubMed  Google Scholar 

  25. Bottom DK. (2013) Medical vaporizer and method of control of a medical vaporizer. US Patent and Trademark Office, US8752544.

  26. Van Poucke GE, Bravo LJ, Shafer SL. Target controlled infusions: targeting the effect site while limiting peak plasma concentration. IEEE Trans Biomed Eng. 2004;51(11):1869–75.

    Article  PubMed  Google Scholar 

  27. Kang C-G. Origin of Stability Analysis: “On Governors” by JC Maxwell. IEEE Control Systems. 2016;36(5):77–88.

    Article  Google Scholar 

  28. Standards for Basic Anesthetic Monitoring. Committee of Origin: Standards and Practice Parameters (2016). Approved by the ASA House of Delegates on October 21, 1986, last amended on October 20, 2010, and last affirmed on October 28, 2016. edn. American Society of Anesthesiologists, http://www.asahq.org/~/media/Sites/ASAHQ/Files/Public/Resources/standards-guidelines/standards-for-basic-anesthetic-monitoring.pdf.

  29. Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30(3):461–80.

    Article  PubMed  Google Scholar 

  30. Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43(1):177–85.

    Article  PubMed  Google Scholar 

  31. Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Cont Educ Anaesth Crit Care Pain. 2011;12(1):5–10.

    Article  Google Scholar 

  32. Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108(3):887–97.

    Article  PubMed  Google Scholar 

  33. Klein M, Minkovich L, Machina M, Selzner M, Spetzler VN, Knaak JM, Roy D, Duffin J, Fisher JA. Non-invasive measurement of cardiac output using an iterative, respiration-based method. Br J Anaesth. 2015;114(3):406–13.

    Article  CAS  PubMed  Google Scholar 

  34. Agostoni P, Cattadori G. Noninvasive cardiac output measurement: a new tool in heart failure. Cardiology. 2009;114(4):244–6.

    Article  PubMed  Google Scholar 

  35. Wiegand G, Kerst G, Baden W, Hofbeck M. Noninvasive cardiac output determination for children by the inert gas-rebreathing method. Pediatr Cardiol. 2010;31(8):1214–8.

    Article  PubMed  Google Scholar 

  36. Bogaard HJ, Wagner PD. Measurement of cardiac output by open-circuit acetylene uptake: a computer model to quantify error caused by ventilation-perfusion inequality. Physiol Meas. 2006;27(10):1023–32.

    Article  PubMed  Google Scholar 

  37. Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82(1):35–45.

    Article  Google Scholar 

  38. Akman G, Kaufman H, Roy R. Continuous pulmonary capillary blood flow estimation from measurements of respiratory anesthetic gas concentration. IEEE Trans Bio-Med Eng. 1985;32(12):1017–31.

    Article  CAS  Google Scholar 

  39. Hendrickx JF, De Cooman S, Deloof T, Vandeput D, Coddens J, De Wolf AM. The ADU vaporizing unit: a new vaporizer. Anesth Analg. 2001;93(2):391–5.

    CAS  PubMed  Google Scholar 

  40. Young J, Kapoor V. Principles of anaesthetic vaporizers. Anaesth Intens Care Med. 2013;14(3):99–102.

    Article  Google Scholar 

Download references

Funding

Funidng was provide by National Institute of General Medical Sciences (Grant No. NIH R01 GM121457-01A1), and also Departmental support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is the sole work of the Corresponding Author.

Corresponding author

Correspondence to Christopher W. Connor.

Ethics declarations

Conflict of interest

Author declares that they have no conflict of interest.

Appendix: Source code for analytical solutions

Appendix: Source code for analytical solutions

The following matlab code (The MathWorks, Chestnut Hill, MA) performs the key analytical steps described in this paper.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connor, C.W. Optimizing target control of the vessel rich group with volatile anesthetics. J Clin Monit Comput 33, 445–454 (2019). https://doi.org/10.1007/s10877-018-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0169-5

Keywords

Navigation