Advertisement

Journal of Clinical Monitoring and Computing

, Volume 33, Issue 2, pp 269–279 | Cite as

Measurement of blood-oxygen saturation using a photoacoustic technique in the rabbit hypoxemia model

  • Kiguna Sei
  • Masanori FujitaEmail author
  • Takeshi Hirasawa
  • Shinpei Okawa
  • Toshihiro Kushibiki
  • Hidenori Sasa
  • Kenichi Furuya
  • Miya Ishihara
Original Research
  • 122 Downloads

Abstract

The golden standard method to obtain accurate blood oxygen saturation is blood gas analysis that needs invasive procedure of blood sampling. Photoacoustic technique enables us to measure real-time blood oxygen saturation without invasive procedure. The aim of this study is to use the photoacoustic technique, an optical method, for accurately determining oxygen saturation in vivo. We measured induced photoacoustic signals of arterial blood in the rabbit model of stable hypoxemia after irradiation at 750 and 800 nm. Oxygen saturation was calculated from the photoacoustic signals using two calibration curves. Calibration curve 1 is a conventional curve derived from the absorbance coefficient of hemoglobin, whereas calibration curve 2 is derived from the photoacoustic signals obtained from the original blood vessel model. Simultaneously, blood-gas analysis was performed to obtain the reference standard of oxygen saturation. Regression analysis and Bland–Altman analysis were performed to assess the accuracy of oxygen saturation obtained using the two methods. The oxygen saturation calculated using calibration curves 1 and 2 showed strong correlations with the reference standard in regression analysis (R = 0.965, 0.964, respectively). The Bland–Altman analysis revealed better agreement and precision with calibration curve 2, whereas there was significant underestimation of values obtained using calibration curve 1. Photoacoustic measurement of oxygen saturation using calibration curve 2 provided an accurate estimate of oxygen saturation, which was similar to that obtained using a portable blood-gas analyzer.

Keywords

Photoacoustic technique Oxygen saturation Blood-gas analysis Non-contact evaluation Calibration 

Notes

Acknowledgements

We would like to express our gratitude to the support by National Defense Medical College Animal Experiment Facility and Mr. Yuta Ikeda for his dedicated assistance to collect data. This study was partly supported by Japan Society for the Promotion of Science (KAKENHI, Grant Number 16K16413).

Funding

This study was supported by the fund of National Defense Medical College and Japan Society for the Promotion of Science (KAKENHI, Grant Number 16K16413).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Ethical approval

The experimental protocol used in this study was approved by the Institutional Review Board on Animal Care of National Defense Medical College, Japan (Approval number; 13091).

References

  1. 1.
    Toffaletti J, Zijlstra WG. Misconceptions in reporting oxygen saturation. Anesth Analg. 2007;105(6):S5–9.CrossRefGoogle Scholar
  2. 2.
    Scheer BV, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):1.CrossRefGoogle Scholar
  3. 3.
    O’grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control. 2011;39(4):S1-34.Google Scholar
  4. 4.
    Severinghaus JW. Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg. 2007;105(6):S1–4.CrossRefGoogle Scholar
  5. 5.
    Hasegawa J, Nakamura M, Matsuoka R, Mimura T, Ichizuka K, Sekizawa A, et al. Evaluation of placental function using near infrared spectroscopy during fetal growth restriction. J Perinat Med. 2010;38(1):29–32.CrossRefGoogle Scholar
  6. 6.
    Kakogawa J, Kanayama N. Application of near-infrared spectroscopy for the evaluation of placental oxygenation. Open Med Devices J. 2012;4:22–7.CrossRefGoogle Scholar
  7. 7.
    Sørensen A, Peters D, Simonsen C, Pedersen M, Stausbøl-Grøn B, Christiansen OB, et al. Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat Diagn. 2013;33(2):141–5.CrossRefGoogle Scholar
  8. 8.
    Sinding M, Peters DA, Frøkjær JB, Christiansen OB, Uldbjerg N, Sørensen A. Reduced placental oxygenation during subclinical uterine contractions as assessed by BOLD MRI. Placenta 2016;39:16–20.CrossRefGoogle Scholar
  9. 9.
    Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602–31.CrossRefGoogle Scholar
  10. 10.
    Laufer J, Elwell C, Delpy D, Beard P. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Phys Med Biol. 2005;50(18):4409.CrossRefGoogle Scholar
  11. 11.
    Zhang HF, Maslov K, Sivaramakrishnan M, Stoica G, Wang LV. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl Phys Lett. 2007;90(5):053901.CrossRefGoogle Scholar
  12. 12.
    Ishihara M, Shinchib M, Horiguchi A, Shinmotoc H, Tsudad H, Irisawae K et al, editors Possibility of transrectal photoacoustic imaging-guided biopsy for detection of prostate cancer. Proc of SPIE Vol; 2017.Google Scholar
  13. 13.
    Märk J, Wagener A, Pönick S, Grötzinger C, Zhang E, Laufer J, editors Motion corrected photoacoustic difference imaging of fluorescent contrast agents. SPIE BiOS; 2016: International Society for Optics and Photonics.Google Scholar
  14. 14.
    Petri M, Stoffels I, Jose J, Leyh J, Schulz A, Dissemond J, et al. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study. J Wound Care. 2016;25(2):87–91.CrossRefGoogle Scholar
  15. 15.
    Petrov I, Petrov Y, Prough D, Cicenaite I, Deyo D, Esenaliev R. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals. Opt Express. 2012;20(4):4159–67.CrossRefGoogle Scholar
  16. 16.
    Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, et al. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(5):888–97.CrossRefGoogle Scholar
  17. 17.
    Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. arXiv preprint arXiv:151105846. 2015.Google Scholar
  18. 18.
    Sei K, Fujita M, Okawa S, Hirasawa T, Kushibiki T, Sasa H, et al. Appropriate timing of blood sampling for blood gas analysis in the ventilated rabbit. J Surg Res. 2016;206(2):325–36.CrossRefGoogle Scholar
  19. 19.
    Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N, et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep. 2014;4:6525.CrossRefGoogle Scholar
  20. 20.
    Wang Y, Hu S, Maslov K, Zhang Y, Xia Y, Wang LV. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure. Opt Lett. 2011;36(7):1029–31.CrossRefGoogle Scholar
  21. 21.
    Prahl S. Optical absorption of hemoglobin, vol. 15. Oregon: Oregon Medical Laser Center; 1999. http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  22. 22.
    Feiner JR, Rollins MD, Sall J, Eilers H, Au P, Bickler PE. Accuracy of carboxyhemoglobin detection by pulse CO-oximetry during hypoxemia. Anesth Analg. 2013;117(4):847.CrossRefGoogle Scholar
  23. 23.
    Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015;10(2):299–320.CrossRefGoogle Scholar
  24. 24.
    Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;2011:rsfs20110028.Google Scholar
  25. 25.
    Jiang Y, Forbrich A, Harrison T, Zemp RJ. Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study. J Biomed Opt. 2012;17(3):0360121–8.CrossRefGoogle Scholar
  26. 26.
    McGuill MW, Rowan AN. Biological effects of blood loss: implications for sampling volumes and techniques. ILAR J. 1989;31(4):5–20.CrossRefGoogle Scholar
  27. 27.
    World Health Organization. Recommended methodology for using WHO international reference preparations for thromboplastin. Geneva: World Health Organization; 1983.Google Scholar
  28. 28.
    Vandegriff K, Olson J. The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. J Biol Chem. 1984;259(20):12609–18.Google Scholar
  29. 29.
    Ishihara M, Sato M, Kaneshiro N, Mitani G, Sato S, Mochida J, et al. Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method. Lasers Surg Med. 2006;38(3):249–55.CrossRefGoogle Scholar
  30. 30.
    Fischer B, Chavatte-Palmer P, Viebahn C, Santos AN, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012;144(1):1–10.CrossRefGoogle Scholar
  31. 31.
    Lipman N, Marini R, Erdman S. A comparison of ketamine/xylazine and ketamine/xylazine/acepromazine anesthesia in the rabbit. Lab Anim Sci. 1990;40(4):395–8.Google Scholar
  32. 32.
    Lee RC. The rectal temperature of the normal rabbit. Am J Physiol Legacy Content. 1939;125(3):521–9.CrossRefGoogle Scholar
  33. 33.
    Kim KS, Shim JC, Jun JH, Lee KH, Chung CW. Rabbits treated with chronic isepamicin are resistant to mivacurium and rocuronium. Anesth Analg. 1999;88(3):654–8.CrossRefGoogle Scholar
  34. 34.
    Terakawa Y, Ichinohe T, Kaneko Y. Rocuronium and vecuronium do not affect mandibular bone marrow and masseter muscular blood flow in rabbits. J Oral Maxillofacial Surg. 2010;68(1):15–20.CrossRefGoogle Scholar
  35. 35.
    Stahl WR. Scaling of respiratory variables in mammals. J Appl Physiol. 1967;22(3):453–60.CrossRefGoogle Scholar
  36. 36.
    Drorbaugh JE. Pulmonary function in different animals. J Appl Physiol. 1960;15(6):1069–72.CrossRefGoogle Scholar
  37. 37.
    Lowry DW, Mirakhur RK, McCarthy GJ, Carroll MT, McCourt KC. Neuromuscular effects of rocuronium during sevoflurane, isoflurane, and intravenous anesthesia. Anesth Analg. 1998;87(4):936–40.Google Scholar
  38. 38.
    Kiel J, Van Heuven W. Ocular perfusion pressure and choroidal blood flow in the rabbit. Investig Ophthalmol Vis Sci. 1995;36(3):579–85.Google Scholar
  39. 39.
    Aeschbacher G, Webb A. Propofol in rabbits. 2. Long-term anesthesia. Lab Anim Sci. 1993;43(4):328–35.Google Scholar
  40. 40.
    Shah PS, Shah VS. Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Library. 2008; CD002772.Google Scholar
  41. 41.
    Zotti A, Banzato T, Cozzi B. Cross-sectional anatomy of the rabbit neck and trunk: comparison of computed tomography and cadaver anatomy. Res Vet Sci. 2009;87(2):171–6.CrossRefGoogle Scholar
  42. 42.
    Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;327(8476):307–10.CrossRefGoogle Scholar
  43. 43.
    Hanneman SK. Design, analysis and interpretation of method-comparison studies. AACN Adv Crit Care. 2008;19(2):223.Google Scholar
  44. 44.
    American National Standards Institute. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2014. New York: American National Standards Institute; 2014.Google Scholar
  45. 45.
    Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 2015;5(3):289–301.CrossRefGoogle Scholar
  46. 46.
    Lakshman M, Needles A. Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging. Nat Methods. 2015;12(4):iii–v.CrossRefGoogle Scholar
  47. 47.
    Esenaliev RO, Larina IV, Larin KV, Deyo DJ, Motamedi M, Prough DS. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl Opt. 2002;41(22):4722–31.CrossRefGoogle Scholar
  48. 48.
    Laufer J, Delpy D, Elwell C, Beard P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys Med Biol. 2006;52(1):141.CrossRefGoogle Scholar
  49. 49.
    Hammer M, Schweitzer D, Michel B, Thamm E, Kolb A. Single scattering by red blood cells. Appl Opt. 1998;37(31):7410–8.CrossRefGoogle Scholar
  50. 50.
    Sakota D, Takatani S. Photon-cell interactive Monte Carlo model based on the geometric optics theory for photon migration in blood by incorporating both extra-and intracellular pathways. J Biomed Opt. 2010;15(6):065001–14.CrossRefGoogle Scholar
  51. 51.
    Kocsis L, Herman P, Eke A. The modified Beer–Lambert law revisited. Phys Med Biol. 2006;51(5):N91.CrossRefGoogle Scholar
  52. 52.
    Friebel M, Do K, Hahn A, Mu G. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J Biomed Opt. 1999;4(1):36–46.CrossRefGoogle Scholar
  53. 53.
    Reynolds KJ, Palayiwa E, Moyle JT, Sykes MK, Hahn CE. The effect of dyshemoglobins on pulse oximetry: part I, theoretical approach and part II, experimental results using an in vitro test system. J Clin Monitor. 1993;9(2):81–90.CrossRefGoogle Scholar
  54. 54.
    Verwaerde P, Malet C, Lagente M, De La Farge F, Braun J. The accuracy of the i-STAT portable analyser for measuring blood gases and pH in whole-blood samples from dogs. Res Vet Sci. 2002;73(1):71–5.CrossRefGoogle Scholar
  55. 55.
    Zijlstra W, Buursma A, Meeuwsen-Van der Roest W. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem. 1991;37(9):1633–8.Google Scholar
  56. 56.
    Agusti A, Roca J, Barbera J, Casademont J, Rodriguez-Roisin R, Wagner P. Effect of sampling site on femoral venous blood gas values. J Appl Physiol. 1994;77(4):2018–22.CrossRefGoogle Scholar
  57. 57.
    Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, et al. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118(4):823–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kiguna Sei
    • 1
  • Masanori Fujita
    • 2
    Email author
  • Takeshi Hirasawa
    • 3
  • Shinpei Okawa
    • 3
  • Toshihiro Kushibiki
    • 3
  • Hidenori Sasa
    • 1
  • Kenichi Furuya
    • 1
  • Miya Ishihara
    • 3
  1. 1.Department of Obstetrics and GynecologyNational Defense Medical CollegeTokorozawaJapan
  2. 2.Division of Environmental MedicineNational Defense Medical College Research Institute, National Defense Medical CollegeTokorozawaJapan
  3. 3.Department of Medical EngineeringNational Defense Medical CollegeTokorozawaJapan

Personalised recommendations