Advertisement

Journal of Clinical Monitoring and Computing

, Volume 32, Issue 4, pp 667–675 | Cite as

Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review

  • Jennifer Herzog-NiesceryEmail author
  • Hans-Martin Seipp
  • Thomas Peter Weber
  • Martin Bellgardt
Narrative review paper

Abstract

There is a growing interest in the use of volatile anesthetics for inhalational sedation of adult critically ill patients in the ICU. Its safety and efficacy has been demonstrated in various studies and technical equipment such as the anaesthetic conserving device (AnaConDa™; Sedana Medical, Uppsala, Sweden) or the MIRUS™ system (Pall Medical, Dreieich, Germany) have significantly simplified the application of volatile anesthetics in the ICU. However, the personnel’s exposure to waste anesthetic gas during daily work is possibly disadvantageous, because there is still uncertainty about potential health risks. The fact that average threshold limit concentrations for isoflurane, sevoflurane and desflurane either differ significantly between countries or are not even defined at all, leads to raising concerns among ICU staff. In this review, benefits, risks, and technical aspects of inhalational sedation in the ICU are discussed. Further, the potential health effects of occupational long-term low-concentration agent exposure, the staffs’ exposure levels in clinical practice, and strategies to minimize the individual gas exposure are reviewed.

Keywords

Inhalational sedation ICU Occupational gas exposure Anaesthetic conserving device MIRUS™ Gas scavenging system 

Notes

Compliance with ethical standards

Conflict of interest

Herzog-Niescery has received a speaker honorarium from Pall Medical, Dreieich, Germany. Seipp and Weber declares that they have no conflict of interest. Bellgardt has received a speaker honorarium from Pall Medical, Dreieich, Germany.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ. 1989;298:1277–80. doi:  10.1136/bmj.298.6683.1277.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Spencer EM, Willatts SM. Isoflurane for prolonged sedation in the intensive care unit; efficacy and safety. Intensive Care Med. 1992;18:415–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Sackey PV, Martling CR, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the anesthetic conserving device. Crit Care Med. 2004;32:2241–6. doi:  10.1097/01.CCM.0000145951.76082.77.CrossRefPubMedGoogle Scholar
  4. 4.
    Mesnil M, Capdevila X, Bringuier S, Trine PO, Falquet Y, Charbit J, Roustan JP, Chanques G, Jaber S. Long-term sedation in intensive care unit: a randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intensive Care Med. 2011;37:933–41. doi:  10.1007/s00134-011-2187-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Meiser A, Sirtl C, Bellgardt M, Lohmann S, Garthoff A, Kaiser J, Hügler P, Laubenthal HJ. Desflurane compared with propofol for postoperative sedation in the intensive care unit. Br J Anaesth. 2003;90:273–80. doi:  10.1093/bja/aeg059.CrossRefPubMedGoogle Scholar
  6. 6.
    Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993;79(4):795–807. doi:  10.1097/00000542-199310000-00023.CrossRefPubMedGoogle Scholar
  7. 7.
    Mazze RI. No evidence of sevoflurane-induced renal injury in volunteers. Anesth Analg. 1998;87(1):230–1. doi:  10.1097/00000539-199807000-00050.CrossRefPubMedGoogle Scholar
  8. 8.
    Mazze RI, Callan CM, Galvez ST, Delgado-Herrera L, Mayer DB. The effects of sevoflurane on serum creatinine and blood urea nitrogen concentrations: a retrospective, twenty-two-center, comparative evaluation of renal function in adult surgical patients. Anesth Analg. 2000;90(3):683–8. doi:  10.1097/00000539-200003000-00032.CrossRefPubMedGoogle Scholar
  9. 9.
    Soro M, Gallego L, Silva V, Ballester MT, Lloréns J, Alvariño A, García-Perez ML, Pastor E, Aguilar G, Martí FJ, Carratala A, Belda FJ. Cardioprotective effect of sevoflurane and propofol during anaesthesia and the postoperative period in coronary bypass graft surgery: a double-blind randomized study. Eur J Anaesthesiol. 2012;29:561–9. doi:  10.1097/EJA.0b013e3283560.CrossRefPubMedGoogle Scholar
  10. 10.
    Sepac A, Sedlic F, Si-Tayeb K, Lough J, Duncan SA, Bienengraeber M, Park F, Kim J, Bosnjak ZJ. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology. 2010;113(4):906–16. doi:  10.1097/ALN.0b013e3181eff6b7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Feng J, Zuo Z. Isoflurane preconditioning increases endothelial cell tolerance to in-vitro simulated ischaemia. J Pharm Pharmacol. 2011;63(1):106–10. doi:  10.1111/j.2042-7158.2010.01198.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Arnold JH, Truog RD, Molengraft JA. Tolerance to isoflurane during prolonged administration. Anesthesiology. 1993;78:985–8. doi:  10.1097/00000542-199305000-00026.CrossRefPubMedGoogle Scholar
  13. 13.
    Bellgardt M, Bomberg H, Herzog-Niescery J, Dasch B, Vogelsang H, Weber TP, Steinfort C, Uhl W, Wagenpfeil S, Volk T, Meiser A. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients: retrospective analysis. Eur J Anaesthesiol. 2016;33:6–13. doi:  10.1097/EJA.0000000000000252.CrossRefPubMedGoogle Scholar
  14. 14.
    Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol. 2015;172:2051–61. doi:  10.1111/bph.12981.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu L, Zhao H, Wang T, Pac-Soo C, Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth. 2014;28:740–58. doi:  10.1007/s00540-014-1805-y.CrossRefPubMedGoogle Scholar
  16. 16.
    Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab. 2007;27:1108–28. doi:  10.1038/sj.jcbfm.9600410.CrossRefPubMedGoogle Scholar
  17. 17.
    De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, Schimmer RC, Klaghofer R, Neff TA, Schmid ER, Spahn DR, Z’Graggen BR, Urner M, Beck-Schimmer B. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–26. doi:  10.1097/ALN.0b013e3181a10731.CrossRefPubMedGoogle Scholar
  18. 18.
    Beck-Schimmer B, Breitenstein S, Urech S, De Conno E, Wittlinger M, Puhan M, Jochum W, Spahn DR, Graf R, Clavien PA. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann Surg. 2008;248:909–18. doi:  10.1097/SLA.0b013e31818f3dda.CrossRefPubMedGoogle Scholar
  19. 19.
    Julier K, da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology. 2003;98:1315–27. doi:  10.1097/00000542-200306000-00004.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim M, Park SW, Kim M, D’Agati VD, Lee HAT. Isoflurane post-conditioning protects against intestinal ischemia-reperfusion injury and multiorgan dysfunction via transforming growth factor-beta1 generation. Ann Surg. 2012;255:492–503. doi:  10.1097/SLA.0b013e3182441767.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bierman MI, Brown M, Muren O, Keenan RL, Glauser FL. Prolonged isoflurane anesthesia in status asthmaticus. Crit Care Med. 1986;14:832–3. doi:  10.1097/00003246-198609000-00017.CrossRefPubMedGoogle Scholar
  22. 22.
    Mirsattari SM, Sharpe MD, Young GB. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol. 2004;61:1254–9. doi:  10.1001/archneur.61.8.1254.CrossRefPubMedGoogle Scholar
  23. 23.
    Jerath A, Panckhurst J, Parotto M, Lightfoot N, Wasowicz M, Ferguson ND, Steel A, Beattie WS. Safety and efficacy of volatile anesthetic agents compared with standard intravenous midazolam/propofol sedation in ventilated critical care patients: a meta-analysis and systematic review of prospective trials. Anesth Analg. 2017;124:1190–9. doi:  10.1213/ANE.0000000000001634.CrossRefPubMedGoogle Scholar
  24. 24.
    Kong KL, Tyler JE, Willatts SM, Prys-Roberts C. Isoflurane sedation for patients undergoing mechanical ventilation: metabolism to inorganic fluoride and renal effects. Br J Anaesth. 1990;64:159–62. doi:  10.1093/bja/64.2.159.CrossRefPubMedGoogle Scholar
  25. 25.
    Spencer EM, Willatts SM, Prys-Roberts C. Plasma inorganic fluoride concentrations during and after prolonged (greater than 24 h) isoflurane sedation: effect on renal function. Anesth Analg. 1991;73:731–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Njoku D, Laster MJ, Gong DH, Eger EI 2nd, Reed GF, Martin JL. Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth Analg. 1997;84:173–8. doi:  10.1213/00000539-199701000-00031.CrossRefPubMedGoogle Scholar
  27. 27.
    Gottschalk A, Van Aken H, Zenz M, Standl T. Is anesthesia dangerous? Dtsch Arztebl Int. 2011;108:469–74. doi:  10.3238/arztebl.2011.0469.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schlack W, Hollmann M, Stunneck J, Thämer V. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth. 1996;76:860–7. doi:  10.1093/bja/76.6.860.CrossRefPubMedGoogle Scholar
  29. 29.
    Jerath A, Beattie SW, Chandy T, Karski J, Djaiani G, Rao V, Yau T, Wasowicz M, Perioperative Anesthesia Clinical Trials Group. (2015) Volatile-based short-term sedation in cardiac surgical patients: a prospective randomized controlled trial. Crit Care Med 43:1062–9. doi:  10.1097/CCM.0000000000000938.CrossRefPubMedGoogle Scholar
  30. 30.
    Sturesson LW, Malmkvist G, Bodelsson M, Niklason L, Jonson B. Carbon dioxide rebreathing with the anaesthetic conserving device, AnaConDa®. Br J Anaesth. 2012;109:279–83. doi:  10.1093/bja/aes102.CrossRefPubMedGoogle Scholar
  31. 31.
    Sturesson LW, Bodelsson M, Jonson B, Malmkvist G. Anaesthetic conserving device AnaConDa: dead space effect and significance for lung protective ventilation. Br J Anaesth. 2014;113:508–14. doi:  10.1093/bja/aeu102.CrossRefPubMedGoogle Scholar
  32. 32.
    Fraga M, Rama Marceira P, Rodino S, Aymerich H, Pose P, Belda J. The effect of isoflurane and desflurane on intracranial pressure, cerebral perfusion pressure, and cerebral arteriovenous oxygen content difference in normocapnic patients with supratentorial brain tumors. Anesthesiology. 2003;98:1085–90. doi:  10.1097/00000542-200305000-00010.CrossRefPubMedGoogle Scholar
  33. 33.
    Bösel J, Purrucker JC, Nowak F, Renzland J, Schiller P, Pérez EB, Poli S, Brunn B, Hacke W, Steiner T. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa(®): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med. 2012;38:1955–64. doi:  10.1007/s00134-012-2708-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Purrucker JC, Renzland J, Uhlmann L, Bruckner T, Hacke W, Steiner T, Bösel J. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anaesth. 2015;114:934–43. doi:  10.1093/bja/aev070.CrossRefPubMedGoogle Scholar
  35. 35.
    Enlund M, Wiklund L, Lambert H. A new device to reduce the consumption of a halogenated anaesthetic agent. Anaesthesia. 2001;56:429–32. doi:  10.1046/j.1365-2044.2001.01900.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Meiser A, Bellgardt M, Belda J, Röhm K, Laubenthal H, Sirtl C. Technical performance and reflection capacity of the anaesthetic conserving device-a bench study with isoflurane and sevoflurane. J Clin Monit Comput. 2009;23:11–9. doi:  10.1007/s10877-008-9158-4.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bomberg H, Glas M, Groesdonk VH, Bellgardt M, Schwarz J, Volk T, Meiser A. A novel device for target controlled administration and reflection of desflurane—the Mirus™. Anaesthesia. 2014;69:1241–50. doi:  10.1111/anae.12798.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vaisman AI. Working conditions in the operating room and their effect on the health of anesthetists. Eksp Khir Anesteziol. 1967;12:44–9.PubMedGoogle Scholar
  39. 39.
    Fink BR, Shepard TH, Blandau RJ. Teratogenic activity of nitrous oxide. Nature. 1967;214:146–8. doi:  10.1038/214146a0.CrossRefPubMedGoogle Scholar
  40. 40.
    Occupational disease among operating room personnel: a national study. Report of an Ad Hoc Committee on the Effect of Trace Anesthetics on the Health of Operating Room Personnel, American Society of Anesthesiologists. Anesthesiology. 1974;41:321–40.Google Scholar
  41. 41.
    Buring JE, Hennekens CH, Mayrent SS. Health experiences of operating room personnel. Anesthesiology. 1985;62:325–30. doi:  10.1097/00000542-198503000-00018.CrossRefPubMedGoogle Scholar
  42. 42.
    Bovin JF. Risk of spontaneous abortion in women occupationally exposed to anaesthetic gases: a meta-analysis. Occup Environ Med. 1997;54:541–8. doi:  10.1136/oem.54.8.541.CrossRefGoogle Scholar
  43. 43.
    Knill-Jones RP, Rodrigues LV, Moir DD, Spence AA. Anaesthetic practice and pregnancy. Controlled survey of women anaesthetists in the United Kingdom. Lancet. 1972;1:1326–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Cohen EN, Bellville JW, Brown BW Jr. Anesthesia, pregnancy, and miscarriage: a study of operating room nurses and anesthetists. Anesthesiology. 1971;34:343–7. doi:  10.1097/00006254-197204000-00007.CrossRefGoogle Scholar
  45. 45.
    Rosenberg P, Kirves A. Miscarriages among operating theatre staff. Acta Anaesthesiol Scand. 1974;53:37–42. doi:  10.1111/j.1399-6576.1974.tb00780.x.CrossRefGoogle Scholar
  46. 46.
    Spence AA, Knill-Jones RP. Is there a health hazard in anaesthetic practice? Br J Anaesth. 1978;50:713–9.  10.1093/bja/50.7.713.CrossRefPubMedGoogle Scholar
  47. 47.
    Spence AA. Environmental pollution by inhalation anaesthetics. Br J Anaesth. 1987;59:96–103. doi:  10.1093/bja/59.1.96.CrossRefPubMedGoogle Scholar
  48. 48.
    Friedman JM. Teratogen update: anesthetic agents. Teratology. 1988;37:69–77.CrossRefPubMedGoogle Scholar
  49. 49.
    Ferstandig LL. Trace concentrations of anesthetic gases: a critical review of their disease potential. Anesth Analg. 1978;33:430–8. doi:  10.1213/00000539-197805000-00009.CrossRefGoogle Scholar
  50. 50.
    Lauwerys R, Siddons M, Misson CB, Borlee I, Bouckaert A, Lechat MF, De Temmerman P. Anesthetic hazards among Belgian nurses and physicians. Int Arch Occup Environ Health. 1981;48:195–203.CrossRefPubMedGoogle Scholar
  51. 51.
    Spence AA. How safe is anesthesia for you and your patient? Data from U.K. Ten years prospective study. Bull N Y State. 1985;12:140–9.Google Scholar
  52. 52.
    Ericson A, Kallen B. Survey of infants born in 1973 or 1975 to Swedish women working in operating rooms during their pregnancies. Anesth Analg. 1979;58:302–5. doi:  10.1213/00000539-197907000-00008.CrossRefPubMedGoogle Scholar
  53. 53.
    Ericson HA, Källén AJ. Hospitalization for miscarriage and delivery outcome among Swedish nurses working in operating rooms, 1973–1978. Anesth Analg. 1985;64:981–8. doi:  10.1213/00000539-198510000-00007.CrossRefPubMedGoogle Scholar
  54. 54.
    Sweeney B, Bingham RM, Amos RJ, Petty AC, Cole PV. Toxicity of bone marrow in dentists exposed to nitrous oxide. Br Med J. 1985;291:567–9.CrossRefGoogle Scholar
  55. 55.
    Rowland AS, Baird DD, Weinberg CR, Shore DL, Shy CM, Wilcox AJ. Reduced fertility among women employed as dental assistants exposed to high levels of nitrous oxide. N Engl J Med. 1992;327:993–7. doi:  10.1056/NEJM199210013271405.CrossRefPubMedGoogle Scholar
  56. 56.
    Rowland AS, Baird DD, Shore DL, Weinberg CR, Savitz DA, Wilcox AJ. Nitrous oxide and spontaneous abortion in female dental assistants. Am J Epidemiol. 1995;41:531–8. doi:  10.1093/oxfordjournals.aje.a117468.CrossRefGoogle Scholar
  57. 57.
    Koblin DD, Waskel L, Watson JE. Nitrous oxide inactivates methyonine synthetase in human liver. Anesth Analg. 1982;61:75–8.PubMedGoogle Scholar
  58. 58.
    Myles PS, Chan MT, Kaye DM, McIlroy DR, Lau CW, Symons JA, Chen S. Effect of nitrous oxide anesthesia on plasma homocysteine and endothelial function. Anesthesiology. 2008;109:657–63. doi:  10.1097/ALN.0b013e31818629db.CrossRefPubMedGoogle Scholar
  59. 59.
    Franco G, Fonte R, Ghittori S. Drinking habits and occupational exposure to inhalation anesthetics at low doses. Med Lav. 1993;84:463–72.PubMedGoogle Scholar
  60. 60.
    Trevisan A, Venturini MB, Carrieri M, Giraldo M, Maccà I, Perini M, Scapellato ML, Virgili A, Bartolucci GB. Biological indices of kidney involvement in personnel exposed to sevoflurane in surgical areas. Am J Ind Med. 2003;44:474–80. doi: 10.1002/ajim.10299.CrossRefPubMedGoogle Scholar
  61. 61.
    Lucchini R, Belotti L, Cassitto MG, Faillace A, Margonari M, Micheloni G, Scapellato ML, Somenzi V, Spada T, Toffoletto F, Gilioli R. Neurobehavioral functions in operating theatre personnel: a multicenter study. Med Lav. 1997;88:396–405.PubMedGoogle Scholar
  62. 62.
    Doi M, Ikeda K. Airway irritation produced by volatile anaesthetics during brief inhalation: comparison of halothane, enflurane, isoflurane, and sevoflurane. Can J Anaesth. 1993;40:122–6. doi:  10.1007/BF03011308.CrossRefPubMedGoogle Scholar
  63. 63.
    Caraffini S, Ricci F, Assalve D, Lisi P. Isoflurane: an uncommon cause of occupational airborne contact dermatitis. Contact Dermat. 1998;38:286. doi:  10.1111/j.1600-0536.1998.tb05749.x.CrossRefGoogle Scholar
  64. 64.
    Finch TM, Muncaster A, Prais L, Foulds IA. Occupational airborne allergic contact dermatitis from isoflurane vapour. Contact Dermat. 2000;42:46.Google Scholar
  65. 65.
    Johnson JA, Buchan RM, Reif JS. Effect of waste anesthetic gas and vapor exposure on reproductive outcome in veterinary personnel. Am Ind Hyg Assoc J. 1987;48:62–6. doi:  10.1080/15298668791384373.CrossRefPubMedGoogle Scholar
  66. 66.
    Baxter. Highlights of prescribing information. Suprane (desflurane, USP) volatile liquid inhalation. Deerfield: Baxter Healthcare Corporation;2010.Google Scholar
  67. 67.
    Kennedy GL, Smith SH, Keplimger ML, Calandra JC. Reproductive and teratologic studies with isoflurane. Drug Chem Toxicol. 1977;1:75–88. doi:  10.3109/01480547709034428.CrossRefPubMedGoogle Scholar
  68. 68.
    Kanazawa M, Kinefuchi Y, Suzuki T, Fukuyama H, Takiguchi M. The use of sevoflurane anesthesia during early pregnancy. Tokai J Exp Clin Med. 1999;24:53–5.PubMedGoogle Scholar
  69. 69.
    Guirguis SS, Pelmear PL, Roy ML, Wong L. Health effects associated with exposure to anaesthetic gases in Ontario hospital personnel. Br J Ind Med. 1990;47:490–7. doi:  10.1136/oem.47.7.490.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mazze RI. Fertility, reproduction, and postnatal survival in mice chronically exposed to isoflurane. Anesthesiology. 1985;63:663–7. doi:  10.1097/00000542-198512000-00017.CrossRefPubMedGoogle Scholar
  71. 71.
    Karpiński TM, Kostrzewska-Poczekaj M, Stachecki I, Mikstacki A, Szyfter K. Genotoxicity of the volatile anaesthetic desflurane in human lymphocytes in vitro, established by comet assay. J Appl Genet. 2005;46:319–24.PubMedGoogle Scholar
  72. 72.
    Şardaş S, Aygün N, Gamli M, Ünal Y, Berk N, Karakaya AE. Use of alkaline COMET assay (single cell gel electrophoresis technique) to detect DNA damages in lymphocytes of operating room personnel occupationally exposed to anaesthetic gases. Mutat Res. 1998;418:93–100.CrossRefPubMedGoogle Scholar
  73. 73.
    Hoerauf K, Lierz M, Wiesner G, Schroegendorfer K, Lierz P, Spacek A, Brunnberg L, Nüsse M. Genetic damage in operating room personnel exposed to isoflurane and nitrous oxide. Occup Environ Med. 1999;56:433–7. doi:  10.1136/oem.56.7.433.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hoerauf K, Wiesner G, Schroegendorfer KF, Jobst BP, Spacek A, Harth M, Sator-Katzenschlager S, Rüdiger HW. Waste anaesthetic gases induce sister chromatid exchanges in lymphocytes of operating room personnel. Br J Anaesth. 1999;82:764–6. doi:  10.1093/bja/82.5.764.CrossRefPubMedGoogle Scholar
  75. 75.
    Trudnowski RJ, Mehta MP, Rucinski M. Evaluation of the mutagenic potential of enflurane und isoflurane by sister chromatid exchange. J Med. 1987;18:55–60.PubMedGoogle Scholar
  76. 76.
    Karabiyik L, Şardaş S, Polat U, Kocabaş NA, Karakaya AE. Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo using the comet assay. Mutat Res. 2001;492:99–107. doi:  10.1016/S1383-5718(01)00159-0.CrossRefPubMedGoogle Scholar
  77. 77.
    Szyfter K, Szulc R, Mikstacki A, Stachecki I, Rydzanicz M, Jałoszyński P. Genotoxicity of inhalation anaesthetics: DNA lesions generated by sevoflurane in vitro and in vivo. J Appl Genet. 2004;45:369–74.PubMedGoogle Scholar
  78. 78.
    Lüleci N, Sakarya M, Topçu I, Lüleci E, Erinçler T, Solak M. Effects of sevoflurane on cell division and levels of sister chromatid exchange. Anaesthesiol Intensivmed Notfallmed Schmerzther. 2005;40:213–6.CrossRefGoogle Scholar
  79. 79.
    Herzog-Niescery J, Botteck NM, Vogelsang H, Gude P, Bartz H, Weber TP, Seipp HM. Occupational chronic sevoflurane exposure in the everyday reality of the anesthesia workplace. Anesth Analg. 2015;121:1519–28. doi:  10.1213/ANE.0000000000001015.CrossRefPubMedGoogle Scholar
  80. 80.
    Accorsi A, Barbieri A, Raffi GB, Violante FS. Biomonitoring of exposure to nitrous oxide, sevoflurane, isoflurane and halothane by automated GC/MS headspace urinalysis. Int Arch Occup Environ Health. 2001;74:541–8. doi:  10.1007/s004200100263.CrossRefPubMedGoogle Scholar
  81. 81.
    Imbriani M, Ghittori S, Pezzagno G. The biological monitoring of inhalation anaesthetics. G Ital Med Lav Ergon. 1998;20:44–9.PubMedGoogle Scholar
  82. 82.
    Coleman MA, Coles S, Lytle T, Bennetts FE. Prevention of atmospheric contamination during isoflurane sedation. Clin Intensive Care. 1994;5:217–20.PubMedGoogle Scholar
  83. 83.
    Hoerauf K, Koller C, Vescia F, Metz C, Hobbhahn J. Exposure of intensive care personnel to isoflurane in long-term sedation. Anasthesiol Intensivmed Notfallmed Schmerzther. 1995;30:483–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Byhahn C, Lischke V, Westphal K. Arbeitsplatzbelastung im Krankenhaus mit Lachgas und den neuen Inhalationsanästhetika Desfluran und Sevofluran. Dtsch med Wochenschr. 1999;124:137–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Djafari Marbini H, Palayiwa E, Chantler J. Active gas scavenging is unnecessary when using the AnaConDa volatile agent delivery system. J Intensive Care Soc. 2009;1:26–8. doi:  10.1177/175114370901000108.CrossRefGoogle Scholar
  86. 86.
    Pickworth T, Jerath A, DeVine R, Kherani N, Wąsowicz M. The scavenging of volatile anesthetic agents in the cardiovascular intensive care unit environment: a technical report. Can J Anaesth. 2013;60:38–43. doi:  10.1007/s12630-012-9814-5.CrossRefPubMedGoogle Scholar
  87. 87.
    Wong K, Wasowicz M, Grewal D, Fowler T, Ng M, Ferguson ND, Steel A, Jerath. Efficacy of a simple scavenging system for long-term critical care sedation using volatile agent-based anesthesia. Can J Anaesth. 2016;63(5):630–2. doi:  10.1007/s12630-015-0562-1.CrossRefPubMedGoogle Scholar
  88. 88.
    González-Rodríguez R, Muñoz Martínez A, Galan Serrano J, Moral García MV. Health worker exposure risk during inhalation sedation with sevoflurane using the (AnaConDa®) anaesthetic conserving device. Rev Esp Anestesiol Reanim. 2014;61:133–9.CrossRefPubMedGoogle Scholar
  89. 89.
    American Institute of Architects. Guidelines for construction and equipment of hospitals and medical facilities. Washington, DC: American Institute of Architects; 1992.Google Scholar
  90. 90.
    Meiser A, Laubenthal H. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol. 2005;19:523–38.CrossRefPubMedGoogle Scholar
  91. 91.
    Soukup J, Schärff K, Kubosch K, Pohl C, Bomplitz M, Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically Ill patients. J Crit Care. 2009;24(4):535–44. doi:  10.1016/j.jcrc.2009.01.003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of AnesthesiologyRuhr-University Bochum, St. Josef HospitalBochumGermany
  2. 2.Department of Life Science EngineeringUniversity of Applied SciencesGiessenGermany

Personalised recommendations