Journal of Clinical Monitoring and Computing

, Volume 31, Issue 6, pp 1123–1132 | Cite as

Cerebral hemodynamics in sepsis assessed by transcranial Doppler: a systematic review and meta-analysis

  • Daniel Silva de Azevedo
  • Angela Salomao Macedo Salinet
  • Marcelo de Lima Oliveira
  • Manoel Jacobsen Teixeira
  • Edson Bor-Seng-Shu
  • Ricardo de Carvalho Nogueira
Review Paper
  • 388 Downloads

Abstract

Cerebral microcirculation is gradually compromised during sepsis, with significant reductions in the function of capillaries and blood perfusion in small vessels. Transcranial Doppler ultrasound (TCD) has been used to assess cerebral circulation in a typical clinical setting. This study was to systematically review TCD studies, assess their methodological quality, and identify trends that can be associated with the temporal evolution of sepsis and its clinical outcome. A meta-analysis of systematic reviews was conducted according to the PRISMA statement. Articles were searched from 1982 until the conclusion of this review in December 2015. Twelve prospective and observational studies were selected. Evaluations of cerebral blood flow, cerebral autoregulation, and carbon dioxide (CO2) vasoreactivity were summarized. A temporal pattern of the evolution of the illness was found. In early sepsis, the median blood flow velocity (Vm) and pulsatility index (PI) increased, and the cerebral autoregulation (CA) remained unchanged. In contrast, Vm normalization, PI reduction and CA impairment were found in later sepsis (patients with severe sepsis or septic shock). Cerebral haemodynamic is impaired in sepsis. Modifications in cerebral blood flow may be consequence to the endothelial dysfunction of the microvasculature induced by the release of inflammatory mediators. A better understanding of cerebral hemodynamics may improve the clinical management of patients with sepsis and, consequently, improve clinical outcomes.

Keywords

Transcranial Doppler in sepsis Cerebral hemodinamycs in sespsis Cerebral autoregulation in sepsis 

References

  1. 1.
    Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent JL, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14(4):R140. doi:10.1186/cc9205.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED. Pathophysiology of septic encephalopathy: a review. Crit Care Med. 2000;28(8):3019–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Wilson JX, Young GB. Progress in clinical neurosciences: sepsis-associated encephalopathy: envolving concepts. Can J Neurol Sci. 2003;30(2):98–105.CrossRefPubMedGoogle Scholar
  4. 4.
    Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen CA. Neurologic complications of critical medical illness. Crit Care Med. 1993;21:98–103.CrossRefPubMedGoogle Scholar
  5. 5.
    Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies and mortalities. JAMA. 1996;275:470–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Sharshar T, Polito A, Checinski A, Stevens RD. Septic-associated encephalopathy-everything starts at a microlevel. Crit Care. 2010;14(5):199. doi:10.1186/cc9254.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med. 1989;17(5):399–403.CrossRefPubMedGoogle Scholar
  8. 8.
    Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, Schäfers M, Kummer MP, Klockgether T, Heneka MT. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflamm. 2008;5:38. doi:10.1186/1742-2094-5-38.CrossRefGoogle Scholar
  9. 9.
    Pierrakos C, Antoine A, Velissaris D, Michaux I, Bulpa P, Evrard P, Ossemann M, Dive A. Transcranial Doppler assessment of cerebral perfusion in critically ill septic patients: a pilot study. Ann Intensive Care. 2013;3:28. doi:10.1186/2110-5820-3-28.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pierrakos C, Attou R, Decorte L, Kolyviras A, Malinverni S, Gottignies P, Devriendt J, De Bels D. Transcranial Doppler to assess sepsis-associated encephalopathy in critically ill patients. BMC Anestethesiol. 2014;14:45. doi:10.1186/1471-2253-14-45.CrossRefGoogle Scholar
  11. 11.
    Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP, Nardi O, de la Grandmaison GL, Aboab J, Gray F, Menon D, Annane D. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 2007;33(5):798–806.CrossRefPubMedGoogle Scholar
  12. 12.
    Taccone FS, Scolletta S, Franchi F, Donadello K, Oddo M. Brain perfusion in sepsis. Curr Vasc Pharmacol. 2013;11(2):170–86.PubMedGoogle Scholar
  13. 13.
    Nogueira RC, Bor-Seng-Shu E, Santos MR, Negrão CE, Teixeira MJ, Panerai RB. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS One. 2013;8(8):e70821. doi:10.1371/journal.pone.0070821.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salinet AS, Robinson TG, Panerai RB. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J Appl Physiol. 2015;118(2):170–7. doi:10.1152/japplphysiol.00620.2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(6):e1000097. doi:10.1371/journal.pmed1000097.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bowie RA, O’Connor PJ, Mahajan RP. Cerebrovascular reactivity to carbon dioxide in sepsis syndrome. Anaesthesia. 2003;58(3):261–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Matta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth. 1996;76(6):790–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SC, Pargger H, Steiner LA. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12(3):R63. doi:10.1186/cc6891.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10(1):122–8. doi:10.1007/s12028-008-9140-5.CrossRefPubMedGoogle Scholar
  20. 20.
    Szatmári S, Végh T, Csomós A, Hallay J, Takács I, Molnár C, Fülesdi B. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care. 2010;14(2):R50. doi:10.1186/cc8939.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Röther J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27(7):1231–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Kadoi Y, Saito S, Kawauchi C, Hinohara H, Kunimoto F. Comparative effects of propofol vs dexmedetomidine on cerebrovascular carbon dioxide reactivity in patients with septic shock. Br J Anaesth. 2008;100(2):224–9. doi:10.1093/bja/aem343.CrossRefPubMedGoogle Scholar
  23. 23.
    Thees C, Kaiser M, Scholz M, Semmler A, Heneka MT, Baumgarten G, Hoeft A, Putensen C. Cerebral haemodynamics and carbon dioxide reactivity during sepsis syndrome. Crit Care. 2007;11(6):R123.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fülesdi B, Szatmári S, Antek C, Fülep Z, Sárkány P, Csiba L, Molnár C. Cerebral vasoreactivity to acetazolamide is not impaired in patients with severe sepsis. J Crit Care. 2012;27:337–43. doi:10.1016/j.jcrc.2011.11.002.CrossRefPubMedGoogle Scholar
  25. 25.
    de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66. doi:10.1007/s12028-012-9672-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Brian JE Jr, Faraci FM. Tumor necrosis factor-alpha-induced dilatation of cerebral arterioles. Stroke. 1998;29(2):509–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Hernanz R, Alonso MJ, Briones AM, Vila E, Simonsen U, Salaices M. Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries. Br J Pharmacol. 2003;140(4):671–80.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Skopál J, Turbucz P, Vastag M, Bori Z, Pék M, de Châtel R, Nagy Z, Tóth M, Karádi I. Regulation of endothelin release from human brain microvessel endothelial cells. J Cardiovasc Pharmacol. 1998;31(Suppl 1):S370–2.CrossRefPubMedGoogle Scholar
  30. 30.
    Oliveira Md, de Azevedo DS, de Azevedo MK, Nogueira Rd, Teixeira MJ, Bor-Seng-Shu E. Encephalic hemodynamic phases in subarachnoid hemorrhage: how to improve the protective effect in patient prognoses. Neural Regen Res. 2015;10(5):748–52. doi:10.4103/1673-5374.156969.CrossRefGoogle Scholar
  31. 31.
    Repessé X, Charron C, Vieillard-Baron A. Evaluation of left ventricular systolic function revisited in septic shock. Crit Care. 2013;17(4):164. doi:10.1186/cc12755.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Okamoto H, Ito O, Roman RJ, Hudetz AG. Role of inducible nitric oxide synthase and cyclooxygenase-2 in endotoxin-induced cerebral hyperemia. Stroke. 1998;29(6):1209–18.CrossRefPubMedGoogle Scholar
  33. 33.
    Panerai RB. Transcranial Doppler for evaluation of cerebral autoregulation. Clin Auton Res. 2009;19(4):197–211. doi:10.1007/s10286-009-0011-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, Panerai RB. Cerebral hemodynamics: concepts of clinical importance. Arq Neuropsiquiatr. 2012;70(5):352–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Daniel Silva de Azevedo
    • 1
  • Angela Salomao Macedo Salinet
    • 1
  • Marcelo de Lima Oliveira
    • 1
  • Manoel Jacobsen Teixeira
    • 1
  • Edson Bor-Seng-Shu
    • 1
  • Ricardo de Carvalho Nogueira
    • 1
  1. 1.Neurology Department, School of Medicine, Hospital das ClinicasUniversity of São PauloSão PauloBrazil

Personalised recommendations