Journal of Clinical Monitoring and Computing

, Volume 30, Issue 5, pp 511–518 | Cite as

The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study

  • Azriel Perel
  • Bernd Saugel
  • Jean-Louis Teboul
  • Manu L. N. G. Malbrain
  • Francisco Javier Belda
  • Enrique Fernández-Mondéjar
  • Mikhail Kirov
  • Julia Wendon
  • Roger Lussmann
  • Marco Maggiorini
Original Research

Abstract

In critically ill patients, many decisions depend on accurate assessment of the hemodynamic status. We evaluated the accuracy of physicians’ conventional hemodynamic assessment and the impact that additional advanced monitoring had on therapeutic decisions. Physicians from seven European countries filled in a questionnaire in patients in whom advanced hemodynamic monitoring using transpulmonary thermodilution (PiCCO system; Pulsion Medical Systems SE, Feldkirchen, Germany) was going to be initialized as part of routine care. The collected information included the currently proposed therapeutic intervention(s) and a prediction of the expected transpulmonary thermodilution-derived variables. After transpulmonary thermodilution measurements, physicians recorded any changes that were eventually made in the original therapeutic plan. A total of 315 questionnaires pertaining to 206 patients were completed. The mean difference (±standard deviation; 95 % limits of agreement) between estimated and measured hemodynamic variables was −1.54 (±2.16; −5.77 to 2.69) L/min for the cardiac output (CO), −74 (±235; −536 to 387) mL/m2 for the global end-diastolic volume index (GEDVI), and −0.5 (±5.2; −10.6 to 9.7) mL/kg for the extravascular lung water index (EVLWI). The percentage error for the CO, GEDVI, and EVLWI was 66, 64, and 95 %, respectively. In 54 % of cases physicians underestimated the actual CO by more than 20 %. The information provided by the additional advanced monitoring led 33, 22, 22, and 13 % of physicians to change their decisions about fluids, inotropes, vasoconstrictors, and diuretics, respectively. The limited clinical ability of physicians to correctly assess the hemodynamic status, and the significant impact that more physiological information has on major therapeutic decisions, support the use of advanced hemodynamic monitoring in critically ill patients.

Keywords

Hemodynamic monitoring Decision making Transpulmonary thermodilution Cardiac output Global end-diastolic volume Extravascular lung water 

References

  1. 1.
    Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care. 2009;15:234–8. doi:10.1097/MCC.0b013e32832b70e5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med. 1984;12:549–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Connors AF Jr, Dawson NV, Robert McCaffree D, Gray BA, Siciliano CJ. Assessing hemodynamic status in critically ill patients: Do physicians use clinical information optimally? J Crit Care. 1987;2:174–80.CrossRefGoogle Scholar
  4. 4.
    Veale WN Jr., Morgan JH, Beatty JS, Sheppard SW, Dalton ML, Van de Water JM (2005) Hemodynamic and pulmonary fluid status in the trauma patient: are we slipping? Am Surg 71:621–625; discussion 625-626.Google Scholar
  5. 5.
    Egan JR, Festa M, Cole AD, Nunn GR, Gillis J, Winlaw DS. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 2005;31:568–73. doi:10.1007/s00134-005-2569-5.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoff RG, Rinkel GJ, Verweij BH, Algra A, Kalkman CJ. Nurses’ prediction of volume status after aneurysmal subarachnoid haemorrhage: a prospective cohort study. Crit Care. 2008;12:R153. doi:10.1186/cc7142.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme JF Jr, Schoenfeld DA, Thompson BT. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med. 2009;37:2720–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Saugel B, Kirsche SV, Hapfelmeier A, Phillip V, Schultheiss C, Schmid RM, Huber W. Prediction of fluid responsiveness in patients admitted to the medical intensive care unit. J Crit Care. 2013;28(537):e531–9. doi:10.1016/j.jcrc.2012.10.008.Google Scholar
  9. 9.
    Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, Huber W. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care. 2011;26:402–10. doi:10.1016/j.jcrc.2010.11.001.CrossRefPubMedGoogle Scholar
  10. 10.
    Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E. Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med. 1993;21:218–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Nowak RM, Sen A, Garcia AJ, Wilkie H, Yang JJ, Nowak MR, Moyer ML. The inability of emergency physicians to adequately clinically estimate the underlying hemodynamic profiles of acutely ill patients. Am J Emerg Med. 2012;30:954–60. doi:10.1016/j.ajem.2011.05.021.CrossRefPubMedGoogle Scholar
  12. 12.
    Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care. 2004;8:R60–5. doi:10.1186/cc2423.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–81. doi:10.1097/CCM.0b013e31828a25fd.CrossRefPubMedGoogle Scholar
  14. 14.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Med. Intensive Care Med. 2014;40:1795–815. doi:10.1007/s00134-014-3525-z.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Potter BJ, Deverenne B, Doucette S, Fergusson D, Magder S. Cardiac output responses in a flow-driven protocol of resuscitation following cardiac surgery. J Crit Care. 2013;28:265–9. doi:10.1016/j.jcrc.2012.09.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Bellomo R, Uchino S. Cardiovascular monitoring tools: use and misuse. Curr Opin Crit Care. 2003;9:225–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20. doi:10.1007/s00134-007-0967-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Greenberg SB, Murphy GS, Vender JS. Current use of the pulmonary artery catheter. Curr Opin Crit Care. 2009;15:249–53. doi:10.1097/MCC.0b013e32832b302b.CrossRefPubMedGoogle Scholar
  19. 19.
    Thompson JP, Mahajan RP. Monitoring the monitors–beyond risk management. Br J Anaesth. 2006;97:1–3. doi:10.1093/bja/ael139.CrossRefPubMedGoogle Scholar
  20. 20.
    Robin ED, McCauley RF. Monitor wizards can be dangerous. Chest. 1998;114:1511–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Parker MM. Goals for fluid resuscitation: a real challenge. Crit Care Med. 2007;35:295–6. doi:10.1097/01.ccm.0000251846.58645.5a.CrossRefPubMedGoogle Scholar
  22. 22.
    Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Steingrub JS, Celoria G, Vickers-Lahti M, Teres D, Bria W. Therapeutic impact of pulmonary artery catheterization in a medical/surgical ICU. Chest. 1991;99:1451–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L. Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med. 1994;22:573–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Marinelli WA, Weinert CR, Gross CR, Knoedler JP Jr, Bury CL, Kangas JR, Leatherman JW. Right heart catheterization in acute lung injury: an observational study. Am J Respir Crit Care Med. 1999;160:69–76. doi:10.1164/ajrccm.160.1.9711079.CrossRefPubMedGoogle Scholar
  26. 26.
    Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36:3093–6. doi:10.1097/CCM.0b013e31818c10c7.CrossRefPubMedGoogle Scholar
  27. 27.
    Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302. doi:10.1097/MCC.0b013e3283466b85.CrossRefPubMedGoogle Scholar
  28. 28.
    Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70. doi:10.1001/jama.294.13.1664.CrossRefPubMedGoogle Scholar
  29. 29.
    Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: Update on hemodynamic monitoring–a consensus of 16. Crit Care. 2011;15:229. doi:10.1186/cc10291.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004;32:S455–65.CrossRefPubMedGoogle Scholar
  31. 31.
    Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17:290–5. doi:10.1097/MCC.0b013e32834699cd.CrossRefPubMedGoogle Scholar
  32. 32.
    Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Perel A. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Crit Care. 2013;17:108. doi:10.1186/cc11918.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vincent JL, Ince C, Bakker J. Clinical review: circulatory shock—an update: a tribute to Professor Max Harry Weil. Crit Care. 2012;16:239. doi:10.1186/cc11510.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hanson J, Lam SW, Alam S, Pattnaik R, Mahanta KC, Uddin Hasan M, Mohanty S, Mishra S, Cohen S, Day N, White N, Dondorp A. The reliability of the physical examination to guide fluid therapy in adults with severe falciparum malaria: an observational study. Malar J. 2013;12:348. doi:10.1186/1475-2875-12-348.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Duan J, Cong LH, Wang H, Zhang Y, Wu XJ, Li G. Clinical evaluation compared to the pulse indicator continuous cardiac output system in the hemodynamic assessment of critically ill patients. Am J Emerg Med. 2014;32:629–33. doi:10.1016/j.ajem.2014.03.023.CrossRefPubMedGoogle Scholar
  37. 37.
    Dawson NV, Connors AF Jr, Speroff T, Kemka A, Shaw P, Arkes HR. Hemodynamic assessment in managing the critically ill: is physician confidence warranted? Med Decis Making. 1993;13:258–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Hilton AK, Bellomo R. A critique of fluid bolus resuscitation in severe sepsis. Crit Care. 2012;16:302. doi:10.1186/cc11154.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23. doi:10.1007/s00134-005-2586-4.CrossRefPubMedGoogle Scholar
  40. 40.
    Trof RJ, Danad I, Reilingh MW, Breukers RM, Groeneveld AB. Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care. 2011;15:R73. doi:10.1186/cc10062.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7. doi:10.1097/CCM.0b013e3181a590da.CrossRefPubMedGoogle Scholar
  42. 42.
    Pino-Sanchez F, Lara-Rosales R, Guerrero-Lopez F, Chamorro-Marin V, Navarrete-Navarro P, Carazo-de la Fuente E, Fernandez-Mondejar E. Influence of extravascular lung water determination in fluid and vasoactive therapy. J Trauma. 2009;67:1220–4. doi:10.1097/TA.0b013e3181a5f1f1.CrossRefPubMedGoogle Scholar
  43. 43.
    Roizen MF, Toledano A. Technology assessment and the “learning contamination” bias. Anesth Analg. 1994;79:410–2.CrossRefPubMedGoogle Scholar
  44. 44.
    Young D, Griffiths J. Clinical trials of monitoring in anaesthesia, critical care and acute ward care: a review. Br J Anaesth. 2006;97:39–45. doi:10.1093/bja/ael107.CrossRefPubMedGoogle Scholar
  45. 45.
    Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–8. doi:10.1097/CCM.0b013e3181f208ac.CrossRefPubMedGoogle Scholar
  46. 46.
    Perner A, Myburgh J. Ten ‘short-lived’ beliefs in intensive care medicine. Intensive Care Med. 2015;. doi:10.1007/s00134-015-3733-1.Google Scholar
  47. 47.
    Tobin MJ (2008) Counterpoint: evidence-based medicine lacks a sound scientific base. Chest 133:1071–1074; discussion 1074-1077. doi:10.1378/chest.08-0077.
  48. 48.
    Tonelli MR, Curtis JR, Guntupalli KK, Rubenfeld GD, Arroliga AC, Brochard L, Douglas IS, Gutterman DD, Hall JR, Kavanagh BP, Mancebo J, Misak CJ, Simpson SQ, Slutsky AS, Suffredini AF, Thompson BT, Ware LB, Wheeler AP, Levy MM. An official multi-society statement: the role of clinical research results in the practice of critical care medicine. Am J Respir Crit Care Med. 2012;185:1117–24. doi:10.1164/rccm.201204-0638ST.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Azriel Perel
    • 1
  • Bernd Saugel
    • 2
  • Jean-Louis Teboul
    • 3
    • 4
  • Manu L. N. G. Malbrain
    • 5
  • Francisco Javier Belda
    • 6
  • Enrique Fernández-Mondéjar
    • 7
  • Mikhail Kirov
    • 8
  • Julia Wendon
    • 9
  • Roger Lussmann
    • 10
    • 11
  • Marco Maggiorini
    • 12
  1. 1.Department of Anesthesiology and Critical Care, Sheba Medical CenterTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Anesthesiology, Center of Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Paris-Sud Medical SchoolParis-Saclay UniversityLe Kremlin-BicêtreFrance
  4. 4.Paris-Saclay UniversityLe Kremlin-BicêtreFrance
  5. 5.Department of Intensive CareZiekenhuis Netwerk AntwerpenAntwerpBelgium
  6. 6.Department of Anaesthesia and Surgical Critical CareHospital Clinico UniversitarioValenciaSpain
  7. 7.Neuro-Trauma Intensive Care UnitUniversity Hospital Virgen de LAS NievesGranadaSpain
  8. 8.Department of Anaesthesiology and Intensive Care MedicineNorthern State Medical UniversityArkhangelskRussia
  9. 9.Liver Intensive CareKing’s College HospitalLondonUK
  10. 10.Surgical Intensive Care MedicineKantonsspital St. GallenSt. GallenSwitzerland
  11. 11.Intensive Care Unit of the Institute of Anesthesiology and Intensive Care MedicineKlinik HirslandenZurichSwitzerland
  12. 12.Medical Intensive Care Unit of the Department of Internal MedicineUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations