Advertisement

Journal of Clinical Monitoring and Computing

, Volume 27, Issue 4, pp 385–393 | Cite as

The use of heart rate variability for the early detection of treatable complications after aneurysmal subarachnoid hemorrhage

  • Soojin Park
  • Farhad Kaffashi
  • Kenneth A. Loparo
  • Frank J. Jacono
Original Paper

Abstract

High-grade aneurysmal subarachnoid hemorrhage patients are monitored in the ICU for up to 21 days, as they are at risk for complications such as vasospasm of cerebral arteries, cardiac arrhythmias and neurogenic stress cardiomyopathy. The diagnosis of these treatable complications is often delayed by the limitations of monitoring capabilities. We applied computational analysis to a cohort of 24 aneurysmal subarachnoid hemorrhage patients, to identify heart rate variability and ECG frequency profiles that may be potential biomarkers of severe vasospasm, reversible cardiomyopathy and death.

Keywords

Computational analysis of heart rate variability Heart rate variability Intensive care monitoring 

References

  1. 1.
    Binici Z, Mouridsen MR, Kober L, Sajadieh A. Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke. 2011;42:3196–201.PubMedCrossRefGoogle Scholar
  2. 2.
    Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS, Lake DE. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas. 2011;32:1821–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Ryan ML, Ogilvie MP, Pereira BM, Gomez-Rodrigues JC, Manning RJ, Vargas PA, Duncan RC, Proctor KG. Heart rate variability is an independent predictor of morbidity and mortality in hemodynamically stable trauma patients. J Trauma. 2011;70(6):1371–80.CrossRefGoogle Scholar
  4. 4.
    Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB. Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand. 2011;55:797–811.PubMedCrossRefGoogle Scholar
  5. 5.
    Gunther A, Witte OW, Hoyer D. Autonomic dysfunction and risk stratification assessed from heart rate pattern. Open Neurol J. 2010;4:39–49.PubMedGoogle Scholar
  6. 6.
    Waldenborg M, Soholat M, Kahari A, Emilsson K, Frobert O. Multidisciplinary assessment of tako tsubo cardiomyopathy: a prospective case study. BMC Cardiovasc Disord. 2011;11:14.PubMedCrossRefGoogle Scholar
  7. 7.
    Kawahara E, Ikeda S, Miyahara Y, Kohno S. Role of autonomic nervous dysfunction in electrocardiographic abnormalities and cardiac injury in patients with acute subarachnoid hemorrhage. Circ J. 2003;67(9):753–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Su IC, Li CH, Wang KC, Lai DM, Huang SJ, Shieh JS, Tu YK. Prediction of early secondary complications in patients with spontaneous subarachnoid hemorrhage based on accelerated sympathovagal ratios. Acta Neurochir (Wien). 2009;151(12):1631–7.CrossRefGoogle Scholar
  9. 9.
    Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–65.CrossRefGoogle Scholar
  10. 10.
    Brodsky B, Darkhovsky B. Nonparametric methods in change-point problems. Dordrecht: Kluwer Academic Publishers; 1993.CrossRefGoogle Scholar
  11. 11.
    DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon S, Gornbein J, Harper RM. RMSSD, a measure of heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 inventory. Epilepsy Behav. 2010;19(1):78–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Stock D, Watson CJ. Human judgment accuracy, multidimensional graphics, and humans vs. models. J Account Res. 1984;22(1):192–206.CrossRefGoogle Scholar
  13. 13.
    Lott JA, Durbridge TC. Use of Chernoff faces to follow trends in laboratory data. J Clin Lab Anal. 1990;4(1):59–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Wenkebach U, Pollwein B, Finsterer U (1992) Visualization of large datasets in intensive care. Proc Annu Symp Comput Appl Med Care 18–22.Google Scholar
  15. 15.
    Spann JF Jr, Moellering RC Jr, Haber E, Wheeler EO. Arrhythmias in acute myocardial infarction—a study utilizing an electrocardiographic monitor for automatic detection and recording of arrhythmias. N Engl J Med. 1964;271:427–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Julian DG, Valentine PA, Miller GG. Disturbances of rate, rhythm and conduction in acute myocardial infarction: a prospective study of 100 consecutive unselected patients with the aid of electrocardiographic monitoring. Am J Med. 1964;37:915–27.PubMedCrossRefGoogle Scholar
  17. 17.
    Stock E, Goble A, Sloman G. Assessment of arrhythmias in myocardial infarction. Br Med J. 1967;2:719–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Soojin Park
    • 1
  • Farhad Kaffashi
    • 2
  • Kenneth A. Loparo
    • 2
  • Frank J. Jacono
    • 3
  1. 1.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Engineering and Computer ScienceCase Western Reserve UniversityClevelandUSA
  3. 3.Division of Pulmonary, Critical Care and Sleep MedicineCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations