Journal of Clinical Monitoring and Computing

, Volume 27, Issue 5, pp 499–508 | Cite as

Factors affecting hemoglobin measurement

Review Paper


A review of the literature shows that current “standard” laboratory measurements for hemoglobin are subject to numerous factors that affect both accuracy and reliability. In addition, total hemoglobin concentration measurements are subject to numerous factors that affect the “true” hemoglobin value. This article discusses both the physiologic factors that influence hemoglobin levels and the technical aspects and variability among the different measurement methodologies currently available.


Hemoglobin concentration CO-Oximetry Hematology analyzer Point-of-care Noninvasive 


Conflict of interest

The author is a paid consultant and member of the Scientific Advisory Board for Masimo Corporation (Irvine, CA).


  1. 1.
    Hünefeld FL. Die Chemismus in der thierischen Organization. Leipzig: Brockhaus FA; 1840.Google Scholar
  2. 2.
    Perutz MF. Structure of hemoglobin. Brookhaven Symp Biol. 1960;13:165–83.PubMedGoogle Scholar
  3. 3.
    Hoppe-Seyler F. Über das Verhalten des Blutfarbstoffes im Spektrum des Sonnenlichtes. Arch Pathol Anat Physiol. 1862;23:446.Google Scholar
  4. 4.
    Lichtman MA, Kaushansky K, Kipps TJ, Prchal JT, Levi MM. Williams hematology. 8th ed. New York: McGraw Hill Medical; 2011.Google Scholar
  5. 5.
    Medical laboratories—Reduction of error through risk management and continual improvement: International Organization for Standardization: ISO/TS 22367; 2008.Google Scholar
  6. 6.
    Lippi G, Guidi GC, Mattiuzzi C, Plebani M. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med. 2006;44:358–65.PubMedGoogle Scholar
  7. 7.
    Daae LN, Halvorsen S, Mathisen PM, Mironska K. A comparison between haematological parameters in ‘capillary’ and venous blood from healthy adults. Scand J Clin Lab Invest. 1988;48:723–6.PubMedGoogle Scholar
  8. 8.
    Neufeld L, Garcia-Guerra A, Sanchez-Francia D, Newton-Sanchez O, Ramirez-Villalobos MD, Rivera-Dommarco J. Hemoglobin measured by Hemocue and a reference method in venous and capillary blood: a validation study. Salud Publica Mex. 2002;44:219–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Mokken FC, van der Waart FJ, Henny CP, Goedhart PT, Gelb AW. Differences in peripheral arterial and venous hemorheologic parameters. Ann Hematol. 1996;73:135–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang ZW, Yang SH, Chen L, Qu J, Zhu J, Tang Z. Comparison of blood counts in venous, fingertip and arterial blood and their measurement variation. Clin Lab Haematol. 2001;23:155–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Junge B, Hoffmeister H, Feddersen HM, Rocker L. Standardisation of obtaining blood samples: influence of tourniquet application on 33 constituents of blood and serum (author’s transl). Dtsch Med Wochenschr. 1978;103:260–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Lippi G, Salvagno GL, Solero GP, Guidi GC. The influence of the tourniquet time on hematological testing for antidoping purposes. Int J Sports Med. 2006;27:359–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Lippi G, Salvagno GL, Montagnana M, Franchini M, Guidi GC. Venous stasis and routine hematologic testing. Clin Lab Haematol. 2006;28:332–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Cengiz M, Ulker P, Meiselman HJ, Baskurt OK. Influence of tourniquet application on venous blood sampling for serum chemistry, hematological parameters, leukocyte activation and erythrocyte mechanical properties. Clin Chem Lab Med. 2009;47:769–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Lundvall J, Bjerkhoel P. Failure of hemoconcentration during standing to reveal plasma volume decline induced in the erect posture. J Appl Physiol. 1994;77:2155–62.PubMedGoogle Scholar
  16. 16.
    Ahlgrim C, Pottgiesser T, Robinson N, Sottas PE, Ruecker G, Schumacher YO. Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int J Lab Hematol. 2012;32:506–11.CrossRefGoogle Scholar
  17. 17.
    Goldner F, Jacob G, Raj SR, Robertson D. The importance of recognizing postural pseudoanemia. Compr Ther. 2006;32:51–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Pocock SJ, Ashby D, Shaper AG, Walker M, Broughton PM. Diurnal variations in serum biochemical and haematological measurements. J Clin Pathol. 1989;42:172–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Schumacher YO, Wenning M, Robinson N, Sottas PE, Ruecker G, Pottgiesser T. Diurnal and exercise-related variability of haemoglobin and reticulocytes in athletes. Int J Sports Med. 2010;31:225–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Looker AC, Sempos CT, Liu KA, Johnson CL, Gunter EW. Within-person variance in biochemical indicators of iron status: effects on prevalence estimates. Am J Clin Nutr. 1990;52:541–7.PubMedGoogle Scholar
  21. 21.
    Morris SS, Ruel MT, Cohen RJ, Dewey KG, de la Briere B, Hassan MN. Precision, accuracy, and reliability of hemoglobin assessment with use of capillary blood. Am J Clin Nutr. 1999;69:1243–8.PubMedGoogle Scholar
  22. 22.
    Boulton FE, Nightingale MJ, Reynolds W. Improved strategy for screening prospective blood donors for anaemia. Transfus Med. 1994;4:221–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Ebert RV, Stead EA Jr. Demonstration that the cell plasma ratio of blood contained in minute vessels is lower than that of venous blood. J Clin Invest. 1941;20:317–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1986) and specifications for international haemiglobincyanide reference preparation (3rd edition). International Committee for Standardization in Haematology; Expert Panel on Haemoglobinometry. Clin Lab Haematol. 1987;9(1):73–79.Google Scholar
  25. 25.
    Zwart A, van Assendelft OW, Bull BS, England JM, Lewis SM, Zijlstra WG. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard (4th edition). J Clin Pathol. 1996;49:271–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Gehring H, Duembgen L, Peterlein M, Hagelberg S, Dibbelt L. Hemoximetry as the “gold standard?” Error assessment based on differences among identical blood gas analyzer devices of five manufacturers. Anesth Analg. 2007;105:S24–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Graham MD. The Coulter principal: foundation of an industry. J Lab Autom. 2003;8(6):72–81.CrossRefGoogle Scholar
  28. 28.
    Pinkerton PH, Spence I, Ogilvie JC, Ronald WA, Marchant P, Ray PK. An assessment of the Coulter counter model S. J Clin Pathol. 1970;23(1):68–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Hematocrit determination in the i-STAT system and comparison to other methods. iSTAT Technical Bulletin. Abbot Point of Care Inc. 2011.Google Scholar
  30. 30.
    Gehring H, Hornberger C, Dibbelt L, Rothsiqkeit A, Gerlach K, Schumacher J, et al. Accuracy of point-of-care-testing (POCT) for determining hemoglobin concentrations. Acta Anaesthesiol Scand. 2002;46:980–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Brunelle JA, Degtiarov AM, Moran RF, Race LA. Simultaneous measurement of total hemoglobin and its derivatives in blood using CO-Oximeters: analytical principles; their application in selecting analytical wavelengths and reference methods; a comparison of the results of the choices made. Scand J Clin Lab Invest Suppl. 1996;224:47–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Holbek CC. New developments in the measurement of CO-Oximetry. Anesth Analg. 2002;94(Suppl 1):S89–92.PubMedGoogle Scholar
  33. 33.
    Patel KP, Hay GW, Cheteri MK, Holt DW. Hemoglobin test result variability and cost analysis of eight different analyzers during open heart surgery. J Extra Corpor Technol. 2007;39:10–7.PubMedGoogle Scholar
  34. 34.
    Hematocrit/HCT and calculated hemoglobin/Hb. Abbott Point of Care, Abbott Park; 2011.Google Scholar
  35. 35.
    Hopfer SM, Nadeau FL, Sundra M, Makowski GS. Effect of protein on hemoglobin and hematocrit assays with a conductivity-based point-of-care testing device: comparison with optical methods. Ann Clin Lab Sci. 2004;34:75–82.PubMedGoogle Scholar
  36. 36.
    Agarwal R, Heinz T. Bedside hemoglobinometry in hemodialysis patients: lessons from point-of-care testing. ASAIO J. 2001;47:240–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Bhaskaram P, Balakrishna N, Radhakrishna KV, Krishnaswamy K. Validation of hemoglobin estimation using Hemocue. Indian J Pediatr. 2003;70:25–8.PubMedCrossRefGoogle Scholar
  38. 38.
    510(k) Premarket notification, K080238; Masimo rainbow set radical 7 pulse CO-Oximeter, Masimo rainbow set rad 87 pulse CO-Oximeter. In: Fa D, editor. Administration. Silver Spring, MD: Food and Drug Administration; 2008.Google Scholar
  39. 39.
    Miller RD, Ward TA, Shiboski SC, Cohen NH. A comparison of three methods of hemoglobin monitoring in patients undergoing spine surgery. Anesth Analg. 2011;112(4):858–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Nguyen BV, Vincent JL, Nowak E, Coat M, Paleiron N, Gouny P, et al. The accuracy of noninvasive hemoglobin measurement by multiwavelength pulse oximetry after cardiac surgery. Anesth Analg. 2011;113:1052–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Macknet MR, Allard M, Applegate RL 2nd, Rook J. The accuracy of noninvasive and continuous total hemoglobin measurement by pulse CO-Oximetry in human subjects undergoing hemodilution. Anesth Analg. 2010;111:1424–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113:1396–402.PubMedCrossRefGoogle Scholar
  43. 43.
    Frasca D, Dahyot-Fizelier C, Catherine K, Levrat Q, Debaene B, Mimoz O. Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients. Crit Care Med. 2011;39:2277–82.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Reilly M. Considerations for evaluating the accuracy of hemoglobin monitoring. Anesthesiology. 2012;117:429–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Coquin J, Dewitte A, Le Manach Y, Caujolle M, Joannes-Boyau O, Fleureau C, Janvier G, Ouattara A. Precision of noninvasive hemoglobin-level measurement by pulse CO-Oximetry in patients admitted to intensive care units for severe gastrointestinal bleeds. Crit Care Med. 2012;40:2576–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Lamhaut L, Apriotesei R, Combes X, Lejay M, Carli P, Vivien B. Comparison of the accuracy of noninvasive hemoglobin monitoring by spectrophotometry (SpHb) and HemoCue(R) with automated laboratory hemoglobin measurement. Anesthesiology. 2011;115:548–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Karkouti K, Wijeysundera DN, Yau TM, McCluskey SA, van Rensburg A, Beattie WS. The influence of baseline hemoglobin concentration on tolerance of anemia in cardiac surgery. Transfusion. 2008;48:666–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Rivas Chirino L, da Silva Viana J, Tavares CA, Palmeiro A, Oliveira FJ. Use of a blood gas analyzer to measure blood hemoglobin during liver transplantation: a study of 935 paired samples. Transplant Proc. 2006;38:810–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Bourner G, Dhaliwal J, Sumner J. Performance evaluation of the latest fully automated hematology analyzers in a large, commercial laboratory setting: a 4-way, side-by-side study. Lab Hematol. 2005;11:285–97.PubMedCrossRefGoogle Scholar
  50. 50.
    Coquin J, Bertarrex A, Dewitte A, Lefevre L, Joannes-Boyau O, Fleureau C, Winnock S, Leuillet S, Janvier G, Ouattara A. Accuracy of determining hemoglobin level using occlusion spectroscopy in patients with severe gastrointestinal bleeding. Anesthesiology. 2013;118:640–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Lacroix J, Tucci M. Noninvasive or invasive hemoglobin measurement? Crit Care Med. 2012;40:2715–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Lippi G, Bassi A, Brocco G, Montagnana M, Salvagno GL, Guidi GC. Preanalytic error tracking in a laboratory medicine department: results of a 1-year experience. Clin Chem. 2006;52:1442–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Dale JC, Novis DA. Outpatient phlebotomy success and reasons for specimen rejection. Arch Pathol Lab Med. 2002;126:416–9.PubMedGoogle Scholar
  55. 55.
    Lippi G, Salvagno GL, Montagnana M, Franchini M, Guidi GC. Phlebotomy issues and quality improvement in results of laboratory testing. Clin Lab. 2006;52:217–30.PubMedGoogle Scholar
  56. 56.
    Lippi G, Guidi GC. Risk management in the preanalytical phase of laboratory testing. Clin Chem Lab Med. 2007;45:720–7.PubMedGoogle Scholar
  57. 57.
    Lippi G, Salvagno GL, Solero GP, Franchini M, Guidi GC. Stability of blood cell counts, hematologic parameters and reticulocytes indexes on the Advia A120 hematologic analyzer. J Lab Clin Med. 2005;146:333–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Plebani M. Appropriateness in programs for continuous quality improvement in clinical laboratories. Clin Chim Acta. 2003;333:131–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hayden SJ, Albert TJ, Watkins TR, Swenson ER. Anemia in critical illness: insights into etiology, consequences, and management. Am J Respir Crit Care Med. 2012;185(10):1049–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Shander A, Fink A, Javidroozi M, Erhard J, Farmer SL, Corwin H, et al. Appropriateness of allogeneic red blood cell transfusion: the international consensus conference on transfusion outcomes. Transfus Med Rev. 2011;25(232–246):e253.Google Scholar
  61. 61.
    Lippi G, Salvagno GL, Montagnana M, Brocco G, Guidi GC. Influence of short-term venous stasis on clinical chemistry testing. Clin Chem Lab Med. 2005;43:869–75.PubMedGoogle Scholar
  62. 62.
    Nkrumah B, Nguah SB, Sarpong N, Dekker D, Idriss A, May J, et al. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol. 2011;11:5.PubMedCrossRefGoogle Scholar
  63. 63.
    Van de Louw A, Lasserre N, Drouhin F, Thierry S, Lecuyer L, Caen D, et al. Reliability of HemoCue in patients with gastrointestinal bleeding. Intensive Care Med. 2007;33:355–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Mimoz O, Frasca D, Medard A, Soubiron L, Debaene B, Dahyot-Fizelier C. Reliability of the HemoCue® hemoglobinometer in critically ill patients: a prospective observational study. Minerva Anesthesiol. 2011;77:979–85.Google Scholar
  65. 65.
    Leino A, Kurvinen K. Interchangeability of blood gas, electrolyte and metabolite results measured with point-of-care, blood gas and core laboratory analyzers. Clin Chem Lab Med. 2011;49:1187–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations