Journal of Clinical Monitoring and Computing

, Volume 27, Issue 3, pp 289–302

Heart rate variability analysis during central hypovolemia using wavelet transformation

  • Soo-Yeon Ji
  • Ashwin Belle
  • Kevin R. Ward
  • Kathy L. Ryan
  • Caroline A. Rickards
  • Victor A. Convertino
  • Kayvan Najarian
Original Research

Abstract

Detection of hypovolemia prior to overt hemodynamic decompensation remains an elusive goal in the treatment of critically injured patients in both civilian and combat settings. Monitoring of heart rate variability has been advocated as a potential means to monitor the rapid changes in the physiological state of hemorrhaging patients, with the most popular methods involving calculation of the R–R interval signal’s power spectral density (PSD) or use of fractal dimensions (FD). However, the latter method poses technical challenges, while the former is best suited to stationary signals rather than the non-stationary R–R interval. Both approaches are also limited by high inter- and intra-individual variability, a serious issue when applying these indices to the clinical setting. We propose an approach which applies the discrete wavelet transform (DWT) to the R–R interval signal to extract information at both 500 and 125 Hz sampling rates. The utility of machine learning models based on these features were tested in assessing electrocardiogram signals from volunteers subjected to lower body negative pressure induced central hypovolemia as a surrogate of hemorrhage. These machine learning models based on DWT features were compared against those based on the traditional PSD and FD, at both sampling rates and their performance was evaluated based on leave-one-subject-out fold cross-validation. Results demonstrate that the proposed DWT-based model outperforms individual PSD and FD methods as well as the combination of these two traditional methods at both sample rates of 500 Hz (p value <0.0001) and 125 Hz (p value <0.0001) in detecting the degree of hypovolemia. These findings indicate the potential of the proposed DWT approach in monitoring the physiological changes caused by hemorrhage. The speed and relatively low computational costs in deriving these features may make it particularly suited for implementation in portable devices for remote monitoring.

Keywords

Heart rate variability (HRV) RR interval Discrete wavelet transformation Power spectral density Higuchi fractal dimension Lower body negative pressure (LBNP) 

References

  1. 1.
    Kelly JF, Ritenour AE, McLaughlin DF, Bagg KA, Apodaca AN, Mallak CT, Pearse L, Lawnick MM, Champion HR, Wade CE, Holcomb JB. Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003–2004 versus 2006. J Trauma. 2008;64:S21–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Teixeira PG, Inaba K, Hadjizacharia P, Brown C, Salim A, Rhee P, Browder T, Noguchi TT, Demetriades D. Preventable or potentially preventable mortality at a mature trauma center. J Trauma. 2007;63:1338–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Alam HB, Burris D, DaCorta JA. Hemorrhage control in the battlefield: role of new hemostatic agents. Mil Med. 2005;170(1):63–9.PubMedGoogle Scholar
  4. 4.
    Weil MH, Becker L, Budinger T, Kern K, Nichol G, Shechter I, Traystman R, Wiedemann H, Wise R, Weisfeldt M, Sopko G. Post resuscitative and initial utility in life saving efforts (pulse): a workshop executive summary. Resuscitation. 2001;50(1):23–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB. Physiological and medical monitoring for en route care of combat casualties. J Trauma. 2008;64:S342–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology. Philadelphia: WB Saunders Company; 1990.Google Scholar
  7. 7.
    Task Force of the European Society of Cardiology, the North American Society of Pacing, and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation and clinical use. Circulation. 1996;96:1043–65.Google Scholar
  8. 8.
    Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH, Moore FA, Holcomb JB. Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma. 2006;60:363–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooke WH, Salinas J, McManus JG, Ryan KL, Rickards CA, Holcomb JB, Convertino VA. Heart period variability in trauma patients may predict mortality and allow remote triage. Aviat Space Environ Med. 2006;77:1107–12.PubMedGoogle Scholar
  10. 10.
    Rapenne T, Moreau D, Lenfant F, Vernet M, Boggio V, Cottin Y, Freysz M. Could heart rate variability predict outcome in patients with severe head injury? A pilot study. J Neurosurg Anesthesiol. 2001;13:260–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Batchinsky AI, Cancio LC, Salinas J, Kuusela T, Cooke WH, Wang JJ, Boehme M, Convertino VA, Holcomb JB. Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients. J Trauma. 2007;63:512–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Cancio LC, Batchinsky AI, Salinas J, Kuusela T, Convertino VA, Wade CE, Holcomb JB. Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma. 2008;65:813–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Gang Y, Malik M. Heart rate variability in critical care medicine. Curr Opin Crit Care. 2002;8:371–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Cooke WH, Convertino VA. Heart rate variability and spontaneous baroreflex sequences: implications for autonomic monitoring during hemorrhage. J Trauma. 2005;58:798–805.PubMedCrossRefGoogle Scholar
  16. 16.
    Cooke WH, Rickards CA, Ryan KL, Convertino VA. Autonomic compensation to simulated hemorrhage monitored with heart period variability. Crit Care Med. 2008;36:1892–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Ryan KL, Rickards CA, Ludwig DA, Convertino VA. Tracking central hypovolemia with ECG in humans: cautions for the use of heart period variability in patient monitoring. Shock. 2010;33(6):583–9.PubMedGoogle Scholar
  18. 18.
    Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol. 2004;96:1249–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Bennett T. Cardiovascular responses to central hypovolaemia in man: physiology and pathophysiology. Physiologist. 1987;30:S143–6.PubMedGoogle Scholar
  20. 20.
    Murray RH, Thompson LJ, Bowers JA, Albright CD. Hemodynamic effects of graded hypovolemia and vasodepressor syncope induced by lower body negative pressure. Am Heart J. 1968;76:799–811.PubMedCrossRefGoogle Scholar
  21. 21.
    van Hoeyweghen R, Hanson J, Stewart MJ, Dethune L, Davies I, Little RA, Horan MA, Kirkman E. Cardiovascular response to graded lower body negative pressure in young and elderly man. Exp Physiol. 2001;86(03):427–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.PubMedGoogle Scholar
  23. 23.
    Esteller R, Vachtsevanos G, Echauz J, Litt B. A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I. 2001;48(2):177–83.CrossRefGoogle Scholar
  24. 24.
    Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC. Sympathetic nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Auton Neurosci. 2007;136(1–2):43–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44:1031–51.CrossRefGoogle Scholar
  26. 26.
    Acharya UR, Subbanna BP, Kannathal N, Rao A, Lim CM. Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM. 2005;26(2):133–9.CrossRefGoogle Scholar
  27. 27.
    Yeragani VK, Srinivasan K, Vempati S, Pohl R, Balon R. Fractal dimension of heart rate time series, an effective measure of autonomic function. J Appl Physiol. 1993;75(6):2429–38.PubMedGoogle Scholar
  28. 28.
    Carlin M. Measuring the complexity of non-fractal shapes by a fractal method. Pattern Recogn Lett. 2000;21(11):1013–7.CrossRefGoogle Scholar
  29. 29.
    Accardo A, Affinito M, Carrozzi M, Bouquet F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern. 1997;77:339–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer Y. Wavelets: algorithms and applications. SIAM; 1993, translated and revised by R. D. Ryan.Google Scholar
  31. 31.
    Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proc IEEE. 1996;84(4):626–38.CrossRefGoogle Scholar
  32. 32.
    Addison PS. Wavelet transforms and the ECG: a review. Physiol Meas. 2005;26:R155–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Aldroubi A, Unser M, editors. Wavelets in medicine and biology. Boca Raton: CRC Press; 1996.Google Scholar
  34. 34.
    Stiles MK, Clifton D, Grubb NR, Watson JN, Addison PS. Wavelet-based analysis of heart-rate-dependent ECG features. Ann Noninvasive Electrocardiol. 2004;9:316–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Burri H, Chevalier P, Arzi M, Rubel P, Kirkorian G, Touboul P. Wavelet transform for analysis of heart rate variability preceding ventricular arrhythmias in patients with ischemic heart disease. Int J Cardiol. 2006;109(1):101–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Hilton MF, Bates RA, Godfrey KR, Chappell MJ, Cayton RM. Evaluation of frequency and time-frequency spectral analysis of heart rate variability as a diagnostic marker of the sleep apnoea syndrome. Med Biol Eng Comput. 1999;37:760–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Tan BH, Shimizu H, Hiromoto K, Furukawa Y, Ohyanagi M, Iwasaki T. Wavelet transform analysis of heart rate variability to assess the autonomic changes associated with spontaneous coronary spasm of variant angina. J Electrocardiol. 2003;36:117–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Ji SY, Chen W, Ward K, Ryan K, Rickards C, Convertino V, Najarian K. Wavelet based analysis of physiological signals for prediction of severity of hemorrhagic shock. In Proceedings of IEEE international conference on complex medical engineering (CME); 2009. p. 1–6.Google Scholar
  39. 39.
    Ji SY, Soo-Yeon. Computer-aided trauma decision making using machine learning and signal processing. PhD dissertation, VCU digital archives, 2008.Google Scholar
  40. 40.
    Gomez C, Mediavilla A, Hornero R, Abasolo D, Fernandez A. Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med Eng Phys. 2009;31:306–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Najarian K. Fixed-distribution PAC learning theory for neural FIR models. J Intell Inform Syst. 2005;25(30):275–91.CrossRefGoogle Scholar
  42. 42.
    Najarian K. Learning-based complexity evaluation of radial basis function networks. Neural Process Lett. 2002;16(2):137–50.CrossRefGoogle Scholar
  43. 43.
    Suykens JAK, Vandewalle JPL. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.CrossRefGoogle Scholar
  44. 44.
    Candelieri A, Conforti D. A hyper-solution framework for SVM classification: application for predicting destabilizations in chronic heart failure patients. Open Med Inform J. 2010;4:136–40.PubMedGoogle Scholar
  45. 45.
    Ducla-Soares JL, Santos-Bento M, Laranjo S, Andrade A, Ducla-Soares E, Boto JP, Silva-Carvalho L, Rocha IJL. Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test, Valsalva manoeuvre and deep breathing. Exp Physiol. 2007;92(4):677–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of international joint conference on AI; 1995. p. 1137–1145.Google Scholar
  47. 47.
    Ji SY, Bsoul AR, Ward K, Ryan K, Rickards C, Convertino V, Najarian K. Incorporating physiological signals to blood loss prediction based on discrete wavelet transformation. Circulation. 2009;120:1483.Google Scholar
  48. 48.
    Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell FE, Hong Y Jr, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand SL, O’Donnell CJ, Smith SC Jr, Wilson PW. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32:230–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Soo-Yeon Ji
    • 2
  • Ashwin Belle
    • 1
  • Kevin R. Ward
    • 3
  • Kathy L. Ryan
    • 5
  • Caroline A. Rickards
    • 4
  • Victor A. Convertino
    • 5
  • Kayvan Najarian
    • 1
  1. 1.Virginia Commonwealth UniversityRichmondUSA
  2. 2.Bowie State UniversityBowieUSA
  3. 3.University of Michigan Health SystemAnn ArborUSA
  4. 4.University of North Texas Health Science CenterFort WorthUSA
  5. 5.US Army Institute of Surgical Research (USISR)Fort Sam HoustonUSA

Personalised recommendations