Journal of Clinical Monitoring and Computing

, Volume 27, Issue 4, pp 405–415 | Cite as

Translational applications of evaluating physiologic variability in human endotoxemia

  • Jeremy D. Scheff
  • Panteleimon D. Mavroudis
  • Steve E. Calvano
  • Ioannis P. AndroulakisEmail author


Dysregulation of the inflammatory response is a critical component of many clinically challenging disorders such as sepsis. Inflammation is a biological process designed to lead to healing and recovery, ultimately restoring homeostasis; however, the failure to fully achieve those beneficial results can leave a patient in a dangerous persistent inflammatory state. One of the primary challenges in developing novel therapies in this area is that inflammation is comprised of a complex network of interacting pathways. Here, we discuss our approaches towards addressing this problem through computational systems biology, with a particular focus on how the presence of biological rhythms and the disruption of these rhythms in inflammation may be applied in a translational context. By leveraging the information content embedded in physiologic variability, ranging in scale from oscillations in autonomic activity driving short-term heart rate variability to circadian rhythms in immunomodulatory hormones, there is significant potential to gain insight into the underlying physiology.


Systemic inflammation Heart rate variability Cortisol Circadian rhythms Decomplexification 



PDM and IPA acknowledge support from NIH GM082974. PDM, JDS, and SEC are supported, in part, from NIH GM34695.


  1. 1.
    Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through. N Engl J Med. 2003;348(16):1546–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Namas R, Zamora R, Namas R, An G, Doyle J, Dick TE, Jacono FJ, Androulakis IP, Nieman GF, Chang S, Billiar TR, Kellum JA, Angus DC, Vodovotz Y. Sepsis: something old, something new, and a systems view. J Crit Care. 2011;27(3):314 e1–11.Google Scholar
  4. 4.
    Novak B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev Mol Cell Biol. 2008;9(12):981–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Pigolotti S, Krishna S, Jensen MH. Oscillation patterns in negative feedback loops. Proc Natl Acad Sci USA. 2007;104(16):6533–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev. 2008;29(7):823–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Griffin MP, O’Shea TM, Bissonette EA, Harrell FE Jr, Lake DE, Moorman JR. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr Res. 2003;53(6):920–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, Bancalari E, Aschner JL, Whit Walker M, Perez JA, Palmer C, Stukenborg GJ, Lake DE, Michael O’Shea T. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159(6):900–6. (e901).PubMedCrossRefGoogle Scholar
  9. 9.
    Yehuda R, Teicher MH, Trestman RL, Levengood RA, Siever LJ. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol Psychiatry. 1996;40(2):79–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83(6):1853–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Polk DE, Cohen S, Doyle WJ, Skoner DP, Kirschbaum C. State and trait affect as predictors of salivary cortisol in healthy adults. Psychoneuroendocrinology. 2005;30(3):261–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):994–1000.PubMedCrossRefGoogle Scholar
  13. 13.
    Mormont MC, Levi F. Circadian-system alterations during cancer processes: a review. Int J Cancer. 1997;70(2):241–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Lowry SF. Human endotoxemia: a model for mechanistic insight and therapeutic targeting. Shock. 2005;24(Suppl 1):94–100.PubMedCrossRefGoogle Scholar
  15. 15.
    Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci. 2009;217(1):27–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. In silico simulation of corticosteroids effect on an NFkB- dependent physicochemical model of systemic inflammation. PLoS ONE. 2009;4(3):e4706.PubMedCrossRefGoogle Scholar
  17. 17.
    Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Multiscale model for the assessment of autonomic dysfunction in human endotoxemia. Physiol Genomics. 2010;42(1):5–19.PubMedCrossRefGoogle Scholar
  18. 18.
    Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. A physiological model for autonomic heart rate regulation in human endotoxemia. Shock. 2011;35(3):229–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS ONE. 2010;5(2):e9249.PubMedCrossRefGoogle Scholar
  20. 20.
    Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol. 2010;264(3):1068–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Scheff JD, Mavroudis PD, Calvano SE, Lowry SF, Androulakis IP. Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiol Genomics. 2011;43(16):951–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Rassias AJ, Holzberger PT, Givan AL, Fahrner SL, Yeager MP. Decreased physiologic variability as a generalized response to human endotoxemia. Crit Care Med. 2005;33(3):512–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Moller K. Human endotoxemia as a model of systemic inflammation. Curr Med Chem. 2008;15(17):1697–705.PubMedCrossRefGoogle Scholar
  24. 24.
    Buttenschoen K, Kornmann M, Berger D, Leder G, Beger HG, Vasilescu C. Endotoxemia and endotoxin tolerance in patients with ARDS. Langenbecks Arch Surg. 2008;393(4):473–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Shanker BA, Coyle SM, Reddell MT, Choi CW, Calvano J, Macor MA, Calvano SE, Lowry SF Modeling the human injury response. J Am Coll Surg. 2010;211(3 Suppl 1):53–54.Google Scholar
  26. 26.
    Lowry SF. The stressed host response to infection: the disruptive signals and rhythms of systemic inflammation. Surg Clin North Am. 2009;89(2):311–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Deans KJ, Haley M, Natanson C, Eichacker PQ, Minneci PC. Novel therapies for sepsis: a review. J Trauma. 2005;58(4):867–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Marshall JC. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov. 2003;2(5):391–405.PubMedCrossRefGoogle Scholar
  29. 29.
    Freeman BD, Natanson C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin Investig Drugs. 2000;9(7):1651–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G. Mechanistic simulations of inflammation: current state and future prospects. Math Biosci. 2009;217(1):1–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G. A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol. 2006;242(1):237–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Kumar R, Clermont G, Vodovotz Y, Chow CC. The dynamics of acute inflammation. J Theor Biol. 2004;230(2):145–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Bard Ermentrout G. A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol. 2006;242(1):220–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Arciero JC, Ermentrout GB, Upperman JS, Vodovotz Y, Rubin JE. Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS ONE. 2010;5(4):e10066.PubMedCrossRefGoogle Scholar
  35. 35.
    Riviere B, Epshteyn Y, Swigon D, Vodovotz Y. A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with Toll-like receptor 4 demonstrates inherent preconditioning behavior. Math Biosci. 2009;217(1):19–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Nieman G, Brown D, Sarkar J, Kubiak B, Ziraldo C, Dutta-Moscato J, Vieau C, Barclay D, Gatto L, Maier K, Constantine G, Billiar TR, Zamora R, Mi Q, Chang S, Vodovotz Y. A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med. 2012;40(4):1052–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Torres A, Bentley T, Bartels J, Sarkar J, Barclay D, Namas R, Constantine G, Zamora R, Puyana JC, Vodovotz Y. Mathematical modeling of posthemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock. 2009;32(2):172–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang Q, Calvano SE, Lowry SF, Androulakis IP. A dual negative regulation model of Toll-like receptor 4 signaling for endotoxin preconditioning in human endotoxemia. Math Biosci. 2011;232(2):151–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Daun S, Rubin J, Vodovotz Y, Roy A, Parker R, Clermont G. An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol. 2008;253(4):843–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Li NY, Vodovotz Y, Kim KH, Mi Q, Hebda PA, Abbott KV. Biosimulation of acute phonotrauma: an extended model. Laryngoscope. 2011;121(11):2418–28.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, Oury TD, Vodovotz Y. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Li NY, Vodovotz Y, Hebda PA, Abbott KV. Biosimulation of inflammation and healing in surgically injured vocal folds. Ann Otol Rhinol Laryngol. 2010;119(6):412–23.PubMedGoogle Scholar
  43. 43.
    Li NY, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, Vodovotz Y. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE. 2008;3(7):e2789.PubMedCrossRefGoogle Scholar
  44. 44.
    Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y. Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen. 2007;15(5):671–82.PubMedCrossRefGoogle Scholar
  45. 45.
    An G. In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit Care Med. 2004;32(10):2050–60.PubMedCrossRefGoogle Scholar
  46. 46.
    An G. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model. 2008;5:11.PubMedCrossRefGoogle Scholar
  47. 47.
    An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med. 2009;1(2):159–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim M, Christley S, Alverdy JC, Liu D, An G. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt). 2012;13(1):18–32.CrossRefGoogle Scholar
  49. 49.
    Seal JB, Alverdy JC, Zaborina O, An G. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: towards characterizing host-pathogen interactions in gut-derived sepsis. Theor Biol Med Model. 2011;8:33.PubMedCrossRefGoogle Scholar
  50. 50.
    Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R, Bentley T, Billiar TR, Zamora R, Puyana JC, Vodovotz Y. A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS ONE. 2011;6(5):e19424.PubMedCrossRefGoogle Scholar
  51. 51.
    Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang EH, Almon RR, Dubois DC, Jusko WJ, Androulakis IP. Identification of global transcriptional dynamics. PLoS ONE. 2009;4(7):e5992.PubMedCrossRefGoogle Scholar
  53. 53.
    Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8(11):1195–203.PubMedCrossRefGoogle Scholar
  54. 54.
    Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24(8):444–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two super systems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.PubMedGoogle Scholar
  57. 57.
    van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest. 1996;97(3):713–9.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Poll T. Effects of Catecholamines on the Inflammatory Response. Sepsis. 2000;4:159–67.CrossRefGoogle Scholar
  59. 59.
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5–8):125–34.PubMedGoogle Scholar
  60. 60.
    Alvarez SM, Katsamanis Karavidas M, Coyle SM, Lu SE, Macor M, Oikawa LO, Lehrer PM, Calvano SE, Lowry SF. Low-dose steroid alters in vivo endotoxin-induced systemic inflammation but does not influence autonomic dysfunction. J Endotoxin Res. 2007;13(6):358–68.PubMedCrossRefGoogle Scholar
  61. 61.
    van der Poll T, Barber AE, Coyle SM, Lowry SF. Hypercortisolemia increases plasma interleukin-10 concentrations during human endotoxemia–a clinical research center study. J Clin Endocrinol Metab. 1996;81(10):3604–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Jan BU, Coyle SM, Oikawa LO, Lu SE, Calvano SE, Lehrer PM, Lowry SF. Influence of acute epinephrine infusion on endotoxin-induced parameters of heart rate variability: a randomized controlled trial. Ann Surg. 2009;249(5):750–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn. 2002;29(1):1–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Coogan AN, Wyse CA. Neuroimmunology of the circadian clock. Brain Res. 2008;1232:104–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med. 2010;38(3):751–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Pollmacher T, Mullington J, Korth C, Schreiber W, Hermann D, Orth A, Galanos C, Holsboer F. Diurnal variations in the human host response to endotoxin. J Infect Dis. 1996;174(5):1040–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Chakraborty A, Krzyzanski W, Jusko WJ. Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J Pharmacokinet Biopharm. 1999;27(1):23–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Lightman SL, Conway-Campbell BL. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci. 2010;11(10):710–8.PubMedCrossRefGoogle Scholar
  69. 69.
    McNally JG, Muller WG, Walker D, Wolford R, Hager GL. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science. 2000;287(5456):1262–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Stavreva DA, Wiench M, John S, Conway-Campbell BL, McKenna MA, Pooley JR, Johnson TA, Voss TC, Lightman SL, Hager GL. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol. 2009;11(9):1093–102.PubMedCrossRefGoogle Scholar
  71. 71.
    McMaster A, Jangani M, Sommer P, Han N, Brass A, Beesley S, Lu W, Berry A, Loudon A, Donn R, Ray DW. Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS ONE. 2011;6(1):e15766.PubMedCrossRefGoogle Scholar
  72. 72.
    Scheff JD, Kosmides AK, Calvano SE, Lowry SF, Androulakis IP. Pulsatile glucocorticoid secretion: origins and downstream effects. IEEE Trans Biomed Eng. 2011;58(12):3504–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Transcriptional implications of ultradian glucocorticoid secretion in homeostasis and in the acute stress response. Physiol Genomics. 2012;44(2):121–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Schmidt HB, Werdan K, Muller-Werdan U. Autonomic dysfunction in the ICU patient. Curr Opin Crit Care. 2001;7(5):314–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S, Moore KP, Mani AR. Endotoxemia is Associated With Partial Uncoupling of Cardiac Pacemaker From Cholinergic Neural Control in Rats. Shock. 2012;37(2):219–27.PubMedCrossRefGoogle Scholar
  76. 76.
    Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, Buchman TG, Suffredini AF. Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med. 1996;24(7):1117–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Rassias AJ, Guyre PM, Yeager MP. Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge. J Crit Care. 2011;26(6):636.e1–5.Google Scholar
  78. 78.
    Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, Dodt C. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R891–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Jan BU, Coyle SM, Macor MA, Reddell M, Calvano SE, Lowry SF. Relationship of basal heart rate variability to in vivo cytokine responses after endotoxin exposure. Shock. 2010;33(4):363–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Kox M, Ramakers BP, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers. Shock. 2011;36(2):115–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2. doi: 10.1126/science.6166045.PubMedCrossRefGoogle Scholar
  82. 82.
    Task. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation. 1996;93(5):1043–65.CrossRefGoogle Scholar
  83. 83.
    Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.PubMedCrossRefGoogle Scholar
  84. 84.
    deBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987;253(3 Pt 2):H680–9.PubMedGoogle Scholar
  85. 85.
    Karemaker JM. Autonomic integration: the physiological basis of cardiovascular variability. J Physiol. 1999;517(Pt 2):316.PubMedCrossRefGoogle Scholar
  86. 86.
    Dick TE, Molkov YI, Nieman G, Hsieh YH, Jacono FJ, Doyle J, Scheff JD, Calvano SE, Androulakis IP, An G, Vodovotz Y. Linking inflammation, cardiorespiratory variability, and neural control in acute inflammation via computational modeling. Front Physiol. 2012;3:222.PubMedCrossRefGoogle Scholar
  87. 87.
    Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Stys A, Stys T. Current clinical applications of heart rate variability. Clin Cardiol. 1998;21(10):719–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160(2):458–65.PubMedCrossRefGoogle Scholar
  90. 90.
    Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Batchinsky AI, Skinner JE, Necsoiu C, Jordan BS, Weiss D, Cancio LC. New measures of heart-rate complexity: effect of chest trauma and hemorrhage. J Trauma. 2010;68(5):1178–85.PubMedCrossRefGoogle Scholar
  92. 92.
    Cancio LC, Batchinsky AI, Salinas J, Kuusela T, Convertino VA, Wade CE, Holcomb JB. Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma. 2008;65(4):813–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Morris JA Jr, Norris PR, Waitman LR, Ozdas A, Guillamondegui OD, Jenkins JM. Adrenal insufficiency, heart rate variability, and complex biologic systems: a study of 1, 871 critically ill trauma patients. J Am Coll Surg. 2007;204(5):885–92. (discussion 892-883).PubMedCrossRefGoogle Scholar
  94. 94.
    Riordan WP Jr, Norris PR, Jenkins JM, Morris JA Jr. Early loss of heart rate complexity predicts mortality regardless of mechanism, anatomic location, or severity of injury in 2178 trauma patients. J Surg Res. 2009;156(2):283–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I, McIntyre L, Sundaresan SR, Maziak DE, Shamji FM, Hebert P, Fergusson D, Tinmouth A, Seely AJ. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS ONE. 2009;4(8):e6642.PubMedCrossRefGoogle Scholar
  96. 96.
    Fairchild KD, Srinivasan V, Moorman JR, Gaykema RP, Goehler LE. Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R330–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Huang J, Wang Y, Jiang D, Zhou J, Huang X. The sympathetic-vagal balance against endotoxemia. J Neural Transm. 2010;117(6):729–35.PubMedCrossRefGoogle Scholar
  98. 98.
    Schmidt H, Saworski J, Werdan K, Muller-Werdan U. Decreased beating rate variability of spontaneously contracting cardiomyocytes after co-incubation with endotoxin. J Endotoxin Res. 2007;13(6):339–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O, Taniguchi T, Iijima T, Iwasaki H, Narumiya S, Ushikubi F. Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med. 2005;11(5):562–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Godin PJ, Buchman TG. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 1996;24(7):1107–16.PubMedCrossRefGoogle Scholar
  101. 101.
    Pincus SM. Greater signal regularity may indicate increased system isolation. Math Biosci. 1994;122(2):161–81.PubMedCrossRefGoogle Scholar
  102. 102.
    Lowry SF, Calvano SE. Challenges for modeling and interpreting the complex biology of severe injury and inflammation. J Leukoc Biol. 2008;83(3):553–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35(12):2762–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, Yamazaki F, Doi M, Okamura H, Shiozawa S. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol. 2010;184(3):1560–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Motzkus D, Albrecht U, Maronde E. The human PER1 gene is inducible by interleukin-6. J Mol Neurosci. 2002;18(1–2):105–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007;47:593–628.PubMedCrossRefGoogle Scholar
  109. 109.
    Mavroudis PD, Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Entrainment of peripheral clock genes by cortisol. Physiol Genomics. 2012;44(11):607–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Petrovsky N, Harrison LC. The chronobiology of human cytokine production. Int Rev Immunol. 1998;16(5–6):635–49.PubMedCrossRefGoogle Scholar
  111. 111.
    Donadio V, Cortelli P, Falzone F, Bugiardini E, Giuliani A, Misciali C, Montagna P, Calza L, Liguori R. Isolated generalised anhidrosis induced by postganglionic sympathetic skin nerve fibre degeneration: an incomplete Ross syndrome? J Neurol Neurosurg Psychiatry. 2008;79(8):959–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Brown EN, Meehan PM, Dempster AP. A stochastic differential equation model of diurnal cortisol patterns. Am J Physiol Endocrinol Metab. 2001;280(3):E450–61.PubMedGoogle Scholar
  113. 113.
    Charloux A, Gronfier C, Lonsdorfer-Wolf E, Piquard F, Brandenberger G. Aldosterone release during the sleep-wake cycle in humans. Am J Physiol. 1999;276(1 Pt 1):E43–9.PubMedGoogle Scholar
  114. 114.
    Seydnejad SR, Kitney RI. Modeling of Mayer waves generation mechanisms. IEEE Eng Med Biol Mag. 2001;20(2):92–100.PubMedCrossRefGoogle Scholar
  115. 115.
    Octavio JA, Rodriguez AE, Misticchio F, Marcano A, Jimenez J, Moleiro F. Circadian profiles of heart rate and its instantaneous variability in patients with chronic Chagas’ disease. Rev Esp Cardiol. 2004;57(2):130–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jeremy D. Scheff
    • 1
  • Panteleimon D. Mavroudis
    • 2
  • Steve E. Calvano
    • 3
  • Ioannis P. Androulakis
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA
  3. 3.Department of SurgeryUMDNJ-Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations