Journal of Clinical Monitoring and Computing

, Volume 26, Issue 4, pp 289–294 | Cite as

Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery

  • M. Jeanne
  • C. Clément
  • J. De Jonckheere
  • R. Logier
  • B. Tavernier
Article

Abstract

The analgesia nociception index (ANI) is an online heart rate variability analysis proposed for assessment of the antinociception/nociception balance. In this observational study, we compared ANI with heart rate (HR) and systolic blood pressure (SBP) during various noxious stimuli in anaesthetized patients. 15 adult patients undergoing laparoscopic appendectomy or cholecystectomy were studied. Patients received target controlled infusions of propofol (adjusted to maintain the Bispectral index in the range [40–60]) and remifentanil (with target increase in case of haemodynamic reactivity [increase in HR and/or SBP >20 % of baseline]), and cisatracurium. Medical staff was blind to the ANI monitor. ANI and haemodynamic data were recorded at predefined times before and during surgery, including tetanic stimulation of the ulnar nerve before start of surgery. Anaesthesia induction decreased HR and SBP, while high ANI values (88 [17]) were recorded, indicating parasympathetic predominance. In 10 out of 11 patients, tetanic stimulation led to a transient (<5 min) decrease in ANI to 48 (40) whereas HR and SBP did not change. After start of surgery, ANI decreased to 60 (39) and decreased further to 50 (15) after the pneumoperitoneum was inflated, while there was no significant change in HR or SBP. When haemodynamic reactivity occurred, ANI had further decreased to 40 (15). After completion of surgery, ANI returned to 90 (34). ANI seems more sensitive than HR and SBP to moderate nociceptive stimuli in propofol-anaesthetized patients. Whether ANI monitoring may allow preventing haemodynamic reactivity to noxious stimuli remains to be demonstrated.

Keywords

Analgesia Nociception index Monitoring Anaesthesia 

References

  1. 1.
    Pomfrett C. Heart rate variability, BIS and ‘depth of anaesthesia’. Br J Anaesth. 1999;82:559–662.CrossRefGoogle Scholar
  2. 2.
    Ledowski T, Albus S, Stein J, MacDonald B. Skin conductance for monitoring of acute pain in adult postoperative patients: influence of electrode surface area and sampling time. J Clin Monit Comput. 2011;25:371–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Hans P, Verscheure S, Uutela K, Hans G, Bonhomme V. Effect of a fluid challenge on the Surgical Pleth Index during stable propofol-remifentanil anaesthesia. Acta Anaesthesiol Scand. 2012 [epub ahead of print].Google Scholar
  4. 4.
    Task_Force. Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65.CrossRefGoogle Scholar
  5. 5.
    Pichot V, Buffiere S, Gaspoz JM, Costes F, Molliex S, Duverney D, et al. Wavelet transform of heart rate variability to assess autonomous system activity does not predict arousal from general anesthesia. Can J Anaesthesia. 2001;48:859–63.CrossRefGoogle Scholar
  6. 6.
    Latson TW, O’Flaherty D. Effects of surgical stimulation on autonomic reflex function: assessment of changes in heart rate variability. Br J Anaesth. 1993;70:301–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Jeanne M, Logier R, De Jonckheere J, Tavernier B. Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia. Auton Neurosci. 2009;147:91–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeanne M, Logier R, De Jonckheere J, Tavernier B. Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia. Conf Proc IEEE Eng Med Biol Soc. 2009;1:1840–3.Google Scholar
  9. 9.
    Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a ‘Diprifusor’ TCI system. Anaesthesia. 1998;53:61–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Servin FS. TCI compared with manually controlled infusion of propofol: a multicentre study. Anaesthesia. 1998;53:82–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Feiss P, Fompeyrine S, Banssillon V, Caramella P, Ecoffey C, Gateau O, et al. Indications de la curarisation en anesthésie. Ann Fr Anesth Réanim. 2000;19:337–472.Google Scholar
  12. 12.
    Logier R, Dejonckheere J, Dassonneville A. An efficient algorithm fo R–R interval series filtering. In: Proceedings of the 26th annual international conference of the IEEE engineering in medicine and biology society; 2004.Google Scholar
  13. 13.
    Deutschman CS, Harris AP, Fleisher LA. Changes in heart rate variability under propofol anesthesia: a possible explanation for propofol-induced bradycardia. Anesth Analg. 1994;79:373–7.PubMedGoogle Scholar
  14. 14.
    Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992;76:725–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Win NN, Fukayama H, Kohase H, Umino M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg. 2005;101:97–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl-diazepam-pancuronium anesthesia on heart rate variability: a spectral analysis. J Cardiothorac Vasc Anesth. 1992;6:444–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Latson TW, McCarrol SM, Mirhej MA, Hyndman VA, Whitten CW, Lipton JM. Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth. 1992;4:265–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Zickmann B, Hofmann HC, Pottkämper C, Knothe C, Boldt J, Hempelmann G. Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J Cardiothorac Vasc Anesth. 1996;10:609–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Barvais L, Engelman E, Eba JM, Coussaert E, Cantraine F, Kenny GN. Effect site concentrations of remifentanil and pupil response to noxious stimulation. Br J Anaesth. 2003;91:347–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Wennervirta J, Hynynen M, Koivusalo AM, Uutela K, Huiku M, Vakkuri A. Surgical stress index as a measure of nociception/antinociception balance during general anesthesia. Acta Anaesthesiol Scand. 2008;52:1038–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Luginbühl M, Ypparila-Wolters H, Rüfenacht M, Petersen-Felix S, Korhonen I. Heart rate variability does not discriminate between different levels of haemodynamic responsiveness during surgical anaesthesia. Br J Anaesth. 2007;98:728–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Mäenpää M, Laitio T, Kuusela T, Penttilä J, Kaisti K, Aalto S, et al. Delta entropy of heart rate variability along with deepening anesthesia. Anesth Analg. 2011;112:587–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Jeanne
    • 1
    • 2
  • C. Clément
    • 1
  • J. De Jonckheere
    • 2
  • R. Logier
    • 2
    • 3
  • B. Tavernier
    • 1
  1. 1.Pôle d’Anesthésie Réanimation, Hôpital Roger SalengroUniversity HospitalLille cedexFrance
  2. 2.CIC-IT 807 Inserm University HospitalLilleFrance
  3. 3.Faculté d’Ingénierie et de Management de la santéLille 2 UniversityLilleFrance

Personalised recommendations