Journal of Clinical Monitoring and Computing

, Volume 25, Issue 1, pp 45–56 | Cite as

Pulse pressure variation: where are we today?

  • Maxime Cannesson
  • Mateo Aboy
  • Christoph K Hofer
  • Mohamed Rehman


In the present review we will describe and discuss the physiological and technological background necessary in understanding the dynamic parameters of fluid responsiveness and how they relate to recent softwares and algorithms’ applications. We will also discuss the potential clinical applications of these parameters in the management of patients under general anesthesia and mechanical ventilation along with the potential improvements in the computational algorithms.


Fluid responsiveness fluid optimization cardiac output outcome monitoring arterial pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28. (quiz 49-5).CrossRefPubMedGoogle Scholar
  2. 2.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med. 2005;33:2534–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106:1105–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, et al. Does the pleth variability index indicate the respiratory induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106:1189–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Cannesson M, Desebbe O. Using ventilation induced plethysmographic waveform variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Hénaine R, et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg. 2009;108:513–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Solus-Biguenet H, Fleyfel M, Tavernier B, Kipnis E, Onimus J, Robin E, et al. Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth. 2006;97:808–16.CrossRefPubMedGoogle Scholar
  13. 13.
    Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.CrossRefPubMedGoogle Scholar
  14. 14.
    Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53.PubMedGoogle Scholar
  15. 15.
    Coyle JP, Teplick RS, Long MC, Davison JK. Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology. 1983;59:A53.Google Scholar
  16. 16.
    Aboy M, McNames J, Thong T, Phillips CR, Ellenby MS, Goldstein B. A novel algorithm to estimate the pulse pressure variation index deltaPP. IEEE Trans Biomed Eng. 2004;51:2198–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Hénaine R, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–2000.CrossRefPubMedGoogle Scholar
  19. 19.
    Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2009;101:735–7.Google Scholar
  20. 20.
    Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.CrossRefPubMedGoogle Scholar
  21. 21.
    Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Buettner M, Schummer W, Huettemann E, Schenke S, van Hout N, Sakka SG. Influence of systolic-pressure-variation-guided intraoperative fluid management on organ function and oxygen transport. Br J Anaesth 2008.Google Scholar
  23. 23.
    Kobayashi N, Ko M, Kimura T, Meguro E, Hayakawa Y, Irinoda T, et al. Perioperative monitoring of fluid responsiveness after esophageal surgery using stroke volume variations. Expert Rev Med Devices. 2008;5:311–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care. 2005;9:R562–8.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Cannesson M, Desebbe O, Hachemi M, Jacques D, Bastien O, Lehot JJ. Respiratory variations in pulse oximeter waveform amplitude are influenced by venous return in mechanically ventilated patients under general anaesthesia. Eur J Anaesthesiol. 2007;24:245–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Cannesson M, Desebbe O, Lehot JJ. Fluid responsiveness assessment using the pulse oxymeter waveform: not yet ready for prime time. Anesth Analg. 2007;104:1598–9. (author reply 9-600).CrossRefPubMedGoogle Scholar
  27. 27.
    Natalini G, Rosano A, Franschetti ME, Fachetti P, Bernardini A. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Anesth Analg. 2006;103:1182–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg. 2006;103:1478–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Guyton AH, Hall JE. Heart muscle: the heart as a pump and function of the heart valves. In: Elsevier S, editor. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier; 2006. p. 103–15.Google Scholar
  30. 30.
    Boldt J, Lenz M, Kumle B, Papsdorf M. Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med. 1998;24:147–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Gilbertson AA. Pulmonary artery catheterization and wedge pressure measurement in the general intensive therapy unit. Br J Anaesth. 1974;46:97–104.CrossRefPubMedGoogle Scholar
  32. 32.
    Michard F, Reuter DA. Assessing cardiac preload or fluid responsiveness? It depends on the question we want to answer. Intensive Care Med. 2003;29:1396. (author reply 7).CrossRefPubMedGoogle Scholar
  33. 33.
    Michard F, Ruscio L, Teboul JL. Clinical prediction of fluid responsiveness in acute circulatory failure related to sepsis. Intensive Care Med. 2001;27:1238.CrossRefPubMedGoogle Scholar
  34. 34.
    Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–9.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Muller L, Louart G, Bengler C, Fabbro-Peray P, Carr J, Ripart J, et al. The intrathoracic blood volume index as an indicator of fluid responsiveness in critically ill patients with acute circulatory failure: a comparison with central venous pressure. Anesth Analg. 2008;107:607–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Rick JJ, Burke SS. Respirator paradox. South Med J 1978;71:1376–8, 82.Google Scholar
  41. 41.
    Partridge BL. Use of pulse oximetry as a noninvasive indicator of intravascular volume status. J Clin Monit. 1987;3:263–8.PubMedGoogle Scholar
  42. 42.
    Pizov R, Ya’ari Y, Perel A. The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg. 1989;68:150–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Wyffels PA, Durnez PJ, Helderweirt J, Stockman WM, De Kegel D. Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg. 2007;105:448–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Aboy M, Crespo C, Austin D. An enhanced automatic algorithm for estimation of respiratory variations in arterial pulse pressure during regions of abrupt hemodynamic changes. IEEE Trans Biomed Eng. 2009;56:2537–45.CrossRefPubMedGoogle Scholar
  45. 45.
    Aboy M, McNames J, Thong T, Tsunami D, Ellenby MS, Goldstein B. An automatic beat detection algorithm for pressure signals. IEEE Trans Biomed Eng. 2005;52:1662–70.CrossRefPubMedGoogle Scholar
  46. 46.
    McNames J, Aboy M. Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter. IEEE Trans Biomed Eng. 2008;55:119–29.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim S, Aboy M, McNames J. Pulse pressure variation estimation using a sequential monte carlo method. Conf Proc IEEE Eng Med Biol Soc. 2009;1:5713–6.Google Scholar
  48. 48.
    Hornero R, Aboy M, Gomez C, Hagg DS, Phillips CR. Complexity analysis of arterial pressure during periods of abrupt hemodynamic changes. IEEE Trans Biomed Eng. 2008;55:797–801.CrossRefPubMedGoogle Scholar
  49. 49.
    De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med. 2007;33:1111–3.CrossRefPubMedGoogle Scholar
  50. 50.
    Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Coudray A, Romand JA, Treggiari M, Bendjelid K. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33:2757–62.CrossRefPubMedGoogle Scholar
  52. 52.
    Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, et al. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg. 2006;102:1511–7.CrossRefPubMedGoogle Scholar
  53. 53.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.CrossRefPubMedGoogle Scholar
  54. 54.
    de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions (R3). Crit Care Med 2009.Google Scholar
  55. 55.
    Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P, et al. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemice and hypovolaemic mechanically ventilated pigs. Intensive Care Med. 2007;33:163–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Durand P, Chevret L, Essouri S, Haas V, Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008;34:888–94.CrossRefPubMedGoogle Scholar
  57. 57.
    Payen D, Vallee F, Mari A, Richard JC, De Backer D. Can pulse pressure variations really better predict fluid responsiveness than static indices of preload in patients with acute respiratory distress syndrome? Crit Care Med. 2009;37:1178.CrossRefPubMedGoogle Scholar
  58. 58.
    Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med. 2008;36:2810–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Landsverk SA, Hoiseth LO, Kvandal P, Hisdal J, Skare O, Kirkeboen KA. Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology. 2008;109:849–55.CrossRefPubMedGoogle Scholar
  60. 60.
    Shelley KH, Murray WB, Chang D. Arterial-pulse oximetry loops: a new method of monitoring vascular tone. J Clin Monit. 1997;13:223–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Cannesson M, Desebbe O, Lehot JJ. Fluid responsiveness using non-invasive predictors during major hepatic surgery. Br J Anaesth. 2007;98:272–3. (author reply 3–4).CrossRefPubMedGoogle Scholar
  62. 62.
    Cannesson M, Desebbe O, Lehot JJ. Comment on “Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients” by Feissel et al. Intensive Care Med 2007.Google Scholar
  63. 63.
    Landsverk SA, Kvandal P, Bernjak A, Stefanovska A, Kirkeboen KA. The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform. Anesth Analg. 2007;105:1012–9. (table of contents).CrossRefPubMedGoogle Scholar
  64. 64.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.CrossRefPubMedGoogle Scholar
  65. 65.
    Joshi GP. Intraoperative fluid restriction improves outcome after major elective gastrointestinal surgery. Anesth Analg. 2005;101:601–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Jacob M, Chappell D, Hollmann MW. Current aspects of perioperative fluid handling in vascular surgery. Curr Opin Anaesthesiol. 2009;22:100–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Grocott MPW, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.CrossRefPubMedGoogle Scholar
  68. 68.
    Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–12.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.CrossRefPubMedGoogle Scholar
  70. 70.
    Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.CrossRefPubMedGoogle Scholar
  71. 71.
    Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002;57:845–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108:887–97.CrossRefPubMedGoogle Scholar
  73. 73.
    Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30:1686–92.CrossRefPubMedGoogle Scholar
  75. 75.
    Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennet ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–93.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Poeze M, Greve JW, Ramsay G. Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care. 2005;9:R771–9.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.CrossRefPubMedGoogle Scholar
  78. 78.
    Boyd O, Grounds RM, Bennet ED. A randomized clinical trial of the effects of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.CrossRefPubMedGoogle Scholar
  79. 79.
    Lobo SM, Lobo FR, Polachini CA, Patini DS, Yamamoto AE, de Oliveira NE, Serrano P, Sanches HS, Spegiorin MA, Queiroz MM, Christiano Jr AC, Savieiro EF, Alvarez PA, Teixeira SP, Cunrath GS. Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care 2006;10:R72.Google Scholar
  80. 80.
    Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.CrossRefPubMedGoogle Scholar
  81. 81.
    Forrester JS, Ganz W, Diamond G, McHugh T, Chonette DW, Swan HJ. Thermodilution cardiac output determination with a single flow-directed catheter. Am Heart J. 1972;83:306–11.CrossRefPubMedGoogle Scholar
  82. 82.
    Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol. 1971;27:392–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Ganz W, Swan HJ. Measurement of blood flow by thermodilution. Am J Cardiol. 1972;29:241–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Swan HJ, Ganz W. Variability between measurements of cardiac output. Crit Care Med. 1976;4:279–80.CrossRefPubMedGoogle Scholar
  85. 85.
    Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Yu DT, Platt R, Lanken PN, Black E, Sands KE, Schwartz JS, et al. Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med. 2003;31:2734–41.CrossRefPubMedGoogle Scholar
  87. 87.
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. Jama. 2003;290:2713–20.CrossRefPubMedGoogle Scholar
  88. 88.
    Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.CrossRefPubMedGoogle Scholar
  89. 89.
    Bonazzi M, Gentile F, Biasi GM, Migliavacca S, Esposti D, Cipolla M, et al. Impact of perioperative haemodynamic monitoring on cardiac morbidity after major vascular surgery in low risk patients. A randomised pilot trial. Eur J Vasc Endovasc Surg. 2002;23:445–51.CrossRefPubMedGoogle Scholar
  90. 90.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.CrossRefPubMedGoogle Scholar
  91. 91.
    Chittock DR, Dhingra VK, Ronco JJ, Russell JA, Forrest DM, Tweeddale M, et al. Severity of illness and risk of death associated with pulmonary artery catheter use. Crit Care Med. 2004;32:911–5.CrossRefPubMedGoogle Scholar
  92. 92.
    Hadian M, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care. 2007;13:318–23.CrossRefPubMedGoogle Scholar
  93. 93.
    Pinsky MR. Hemodynamic monitoring over the past 10 years. Crit Care. 2006;10:117.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Cannesson M, Attof Y, Rosamel P, Joseph P, Bastien O, Lehot JJ. Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements. Eur J Anaesthesiol 2007:1–8.Google Scholar
  95. 95.
    Thierry S, Thebert D, Brocas E, Razzaghi F, Van De Louw A, Loisance D, et al. Evaluation of a new invasive continuous cardiac output monitoring system: the truCCOMS system. Intensive Care Med. 2003;29:2096–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, et al. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106:1480–6. (table of contents).CrossRefPubMedGoogle Scholar
  97. 97.
    Lefrant JY, Bruelle P, Aya AG, Saissi G, Dauzat M, de La Coussaye JE, et al. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med. 1998;24:347–52.CrossRefPubMedGoogle Scholar
  98. 98.
    Mayer J, Boldt J, Wolf MW, Lang J, Suttner S. Cardiac output derived from arterial pressure waveform analysis in patients undergoing cardiac surgery: validity of a second generation device. Anesth Analg. 2008;106:867–72. (table of contents).CrossRefPubMedGoogle Scholar
  99. 99.
    Sramek BB. Thoracic electrical bioimpedance measurements of cardiac output. Crit Care Med. 1994;22:1337–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Fortin J, Habenbacher W, Heller A, Hacker A, Grüllenberger R, Innerhofer J, et al. Non-invasive beat-to-beat cardiac output monitoring by an imporved method of tranthoracic bioimpedance measurement. Comput Biol Med. 2006;36:1186–203.Google Scholar
  101. 101.
    Bendjelid K, Schutz N, Suter PM, Romand JA. Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med. 2006;32:919–22.CrossRefPubMedGoogle Scholar
  102. 102.
    Fukui K, Kimberger O, Fujita Y, Kurz A, Pestel JG. Fluid management by difference in pulse pressure (dPP) keeps Pr-etCO2 within tolerable limits. Anesthesiology. 2007;102:A105.Google Scholar
  103. 103.
    Mayer J, Boldt J, Beschmann R, Stephan A, Suttner S. Individualized intraoperative patient optimization using uncalibrated arterial pressure waveform analysis in highr risk patients undergoing major abdominal surgery. Eur J Anaesthesiol 2009;26:3AP4-3.Google Scholar
  104. 104.
    Oubaha D, Poelaert J. Does stroke volume variation guided fluid management improve postoperative outcome? Eur J Anaesthesiol 2009; 26: 3AP5-2.Google Scholar
  105. 105.
    Sakamoto H, Harasawa K, Morimoto Y, Wakisaka H. Anesthesia management in abdominal aneurysm surgery based on stroke volume variation measured by Flo Trac/Vigileo tends to be hypovolemic. Eur J Anaesthesiol 2009; 26: 4AP5-3.Google Scholar
  106. 106.
    Fukui K, Markstaller K, Leibundgut D, Pestel G. Timing of intraoperative fluid management by difference in pulse pressure. Eur J Anaesthesiol 2009; 26: 4AP9-4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maxime Cannesson
    • 1
  • Mateo Aboy
    • 2
  • Christoph K Hofer
    • 3
  • Mohamed Rehman
    • 4
  1. 1.Department of Anesthesiology & Perioperative CareUniversity of California, IrvineOrangeUSA
  2. 2.Department of Electrical Engineering & Renewable EnergyOregon Institute of TechnologyPortlandUSA
  3. 3.Institute of Anesthesiology and Intensive Care MedicineTriemli City Hospital ZurichZurichSwitzerland
  4. 4.Department of Anesthesiology and Critical Care MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations