Journal of Clinical Monitoring and Computing

, Volume 22, Issue 6, pp 401–408 | Cite as

Noninvasive Cardiac Output Measurement by Transthoracic Electrical Bioimpedence: Influence of Age and Gender

  • Talakad N. Sathyaprabha
  • Cauchy Pradhan
  • G. Rashmi
  • Kandavel Thennarasu
  • Trichur R. Raju
Article

Abstract

Background

Thoracic electrical bioimpedance (TEB) as a method of measuring cardiac output (CO) is being explored increasingly over the last two decades, as a non-invasive alternative to the pulmonary artery catheter. The objective of this study was to establish normative data for measurement of CO by TEB and define the effect of age and gender on CO.

Method

Stroke volume (SV) of 397 normal individuals (203 men, 194 women) in the age range of 10–77 years was determined using Kubisek and Bernstein formulae by TEB method. Derived cardiac parameters including CO, cardiac index (CI), systemic vascular resistance and resistance index were calculated and analyzed.

Results

We found significant difference in CO among age groups and between gender. CO between Kubicek formula and Bernstein formula correlated well, but their means differed significantly. Cardiac indices peak in the third and seventh decade and were comparable between genders.

Conclusion

A comprehensive data set of normalized values expressed as 95% confidence interval and mean ± SD in different age groups and different gender was possible for cardiac parameters using TEB.

Key Words

bio impedance TEB non invasive cardiac output 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rackow EC (1997) Pulmonary artery catheter consensus conference.Critical Care Medicine 25(6):901.PubMedCrossRefGoogle Scholar
  2. 2.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D et al, The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996 Sep 18;276(11):889–897.PubMedCrossRefGoogle Scholar
  3. 3.
    Afessa B, Spencer S, Khan W, LaGatta M, Bridges L, Freire AX (2001) Association of pulmonary artery catheter use with in-hospital mortality. Crit Care Med 29(6):1145–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15(2):85–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Shoemaker WC, Wo CC, Bishop MH et al. Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 1994 Dec; 22(12): 1907–1912.Google Scholar
  6. 6.
    Lababidi Z, Ehmke DA, Durnin RE,Leaverton PE,Lauer RM (1970) The first derivative thoracic impedance cardiogram. Circulation 41(4):651–8.PubMedGoogle Scholar
  7. 7.
    Kubicek WG, Karnegis JN,Patterson RP,Witsoe DA,Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37(12):1208.PubMedGoogle Scholar
  8. 8.
    Raaijmakers E, Faes TJ, Scholten RJ et al (1999) A meta-analysis of three decades of validating thoracic impedance cardiography. Critical Care Med 27(6):1203–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Jewkes C,Sear JW,Verhoeff F et al (1991) Non-invasive measurement of cardiac output by thoracic electrical bioimpedance: a study of reproducibility and comparison with thermodilution. Br J Anaesth 67(6):788–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirschl MM, Kittler H,Woisetschlager C et al (2000) Simultaneous comparison of thoracic bioimpedance and arterial pulse waveform-derived cardiac output with thermodilution measurement. Critical Care Med 28(6):1798–802.PubMedCrossRefGoogle Scholar
  11. 11.
    Gujjar AR, Muralidhar K, Banakal S, Gupta R, Sathyaprabha TN, Jairaj PS. Non-invasive cardiac output by transthoracic electrical bioimpe-dence in post-cardiac surgery patients: comparison with thermodilution method. J Clin Monit Comput 2008; 22: 175–180.Google Scholar
  12. 12.
    Kinnen E, Kubicek W, Witsoe D. Thoracic cage impedance measurements. Impedance plythysmographic determination of cardiac output (An interpretative Study). Techn Docum Rep No. SAM-TDR-64-23.AMD TR Rep. 1964 May; 1–12.Google Scholar
  13. 13.
    Bnuta AC, Babu JP, Jindal GD,Parulkar GB (1990) Technical aspects of impedance plethysmography. J Postgrad Med 36(2):64–70.Google Scholar
  14. 14.
    Jindal GB, Babu JP (1985) Calibration of dZ/dt in impedance plethysmography. Med Biol Eng Comput 23(3):279–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Deshpande AK, Jindal,Jagasia PM, Murali KV,Bhaeadwaj PA,Tahilkar KI (1990) Impedance plethysmography of thoracic region: impedance cardiography. J Postgrad Med 36(4):207–12.PubMedGoogle Scholar
  16. 16.
    Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098.PubMedGoogle Scholar
  17. 17.
    Sandham JD, Hull RD, Brant RF (2003) A Randomized, Controlled Trial of the Use of Pulmonary-Artery Catheters in High-Risk Surgical Patients. Indian J Crit Care Med 7:54–55.Google Scholar
  18. 18.
    Clancy TV, Norman K, Reynolds R (1991) Cardiac output measurement in critical care patients: Thoracic Electrical Bioimpedance versus thermodilution. J Trauma 31(8):1116–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Van De Water JM,Miller Tw, Vogel RL et al (2003) Impedance Cardiography:The Next Vital Sign Technology?. Chest 123:2028–2033.CrossRefGoogle Scholar
  20. 20.
    Wong Kl, Hou PC (1996) The accuracy of bioimpedance cardiography in the measurement of cardiac output in comparison with thermodilution method. Acta Anaesthesiol 34(2):55–9.Google Scholar
  21. 21.
    Zacek P, Kunes P, Kobzova E (1999) Thoracic electrical bioimpedance versus thermodilution in patients post open-heart surgery. Acta Medica (Hradec Kralove) 42(1):19–23.Google Scholar
  22. 22.
    Weber J,Heidelmeyer CF,Kubatz F et al (1986) Determination of cardiac output under PEEP-respiration with the “NCCOM 3” non-invasive bioimpedence monitor in comparison with the thermodilution method A study in anesthetized dogs [Article in German]. Aesthesist 35(12):744–7.Google Scholar
  23. 23.
    Ng HW, Coleman N, Walley TJ et al (1993) Reproducibility and comparison of cardiac output measurement by transthoracic bioimpedance and thermodilution methods in critically ill patients. Clin Intensive Care 4(5):217–21.PubMedGoogle Scholar
  24. 24.
    Imhoff M, Lehner JH, Lohlein D, Ziegler D, Grotti L, Krucke G. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med 2000; 28(8): 2812–2818.Google Scholar
  25. 25.
    Sageman WS (1999) Reliability and precision of a new thoracic electrical bioimpedance monitor in a lower body negative pressure model. Crit Care Med 27(9):1986–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Talakad N. Sathyaprabha
    • 1
  • Cauchy Pradhan
    • 1
  • G. Rashmi
    • 1
  • Kandavel Thennarasu
    • 1
  • Trichur R. Raju
    • 1
  1. 1.NIMHANSBangaloreIndia

Personalised recommendations