Journal of Clinical Monitoring and Computing

, Volume 22, Issue 4, pp 299–307

Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry

  • Stephan Schubert
  • Thomas Schmitz
  • Markus Weiss
  • Nicole Nagdyman
  • Michael Huebler
  • Vladimir Alexi-Meskishvili
  • Felix Berger
  • Brigitte Stiller
Article

Abstract

Background. Continuous and non-invasive measurement of cardiac output (CO) may contribute helpful information to the care and treatment of the critically ill pediatric patient. Different methods are available but their clinical verification is still a major problem. Aim. Comparison of reliability and safety of two continuous non-invasive methods with transthoracic echocardiography (TTE) for CO measurement: electric velocimetry technique (EV, Aesculon™) and transesophageal Doppler (TED, CardioQP™). Methods/Material. In 26 infants and children who had undergone corrective cardiac surgery at a median age of 3.5 (1–17) years CO and stroke volume (SV) were obtained by EV, TED and TTE. Each patient had five measurements on the first day after surgery, during mechanical ventilation and sedation. Results. Values for CO and SV from TED and EV correlated well with those of TTE (r = 0.85 and r = 0.88), but mean values were significantly lower than the values of TTE for TED (P = 0.02) and EV (P = 0.001). According to Bland-Altman analysis, bias was 0.36 l/min with a precision of 1.67 l/min for TED vs. TTE and 0.87 l/min (bias) with a precision of 3.26 l/min for EV vs. TTE. No severe adverse events were observed and the handling of both systems was easy in the sedated child. Conclusions. In pediatric patients non-invasive measurement of CO and SV with TED and EV is useful for continuous monitoring after heart surgery. Both new methods seem to underestimate cardiac output in terms of absolute values. However, TED shows tolerable bias and precision and may be helpful for continuous CO monitoring in a deeply sedated and ventilated pediatric patient, e.g. in the operating room or intensive care unit.

Keywords

non-invasive cardiac output pediatric Doppler echocardiography electric velocimetry transesophageal Doppler probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Estagnasie P, Djedaini K, Mier L, Coste F, Dreyfuss D. Measurement of cardiac output by transesophageal echocardiography in mechanically ventilated patients. Comparison with thermodilution. Intensive Care Med 1997; 23: 753–759PubMedCrossRefGoogle Scholar
  2. 2.
    Marcelino P, Germano N, Marum S, Fernandes AP, Ribeiro P, Lopes MG. Haemodynamic parameters obtained by transthoracic echocardiography and Swan-Ganz catheter: a comparative study in liver transplant patients. Acta Med Port 2006; 19: 197–205PubMedGoogle Scholar
  3. 3.
    Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med 2003; 29: 1889–1894PubMedCrossRefGoogle Scholar
  4. 4.
    Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med 2001; 27: 201–205PubMedCrossRefGoogle Scholar
  5. 5.
    Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr 1995; 84: 761–764PubMedCrossRefGoogle Scholar
  6. 6.
    Bearss MG, Yonutas DN, Allen WT. A complication with thermodilution cardiac outputs in centrally-placed pulmonary artery catheters. Chest 1982; 81: 527PubMedCrossRefGoogle Scholar
  7. 7.
    Bossert T, Schmitt DV, Mohr FW. [Pulmonary artery rupture – fatal complication of catheter examination (thermodilution catheter)]. Z Kardiol 2000; 89: 54PubMedCrossRefGoogle Scholar
  8. 8.
    Egan JR, Festa M, Cole AD, Nunn GR, Gillis J, Winlaw DS. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med 2005; 31: 568–573PubMedCrossRefGoogle Scholar
  9. 9.
    Botte A, Leclerc F, Riou Y, Sadik A, Neve V, Rakza T, Richard A. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr Crit Care Med 2006; 7: 231–236PubMedCrossRefGoogle Scholar
  10. 10.
    Ehlers KC, Mylrea KC, Waterson CK, Calkins JM. Cardiac output measurements. A review of current techniques and research. Ann Biomed Eng 1986; 14:219–239PubMedCrossRefGoogle Scholar
  11. 11.
    Wodey E, Gai V, Carre F, Ecoffey C. Accuracy and limitations of continuous oesophageal aortic blood flow measurement during general anaesthesia for children: comparison with transcutaneous echography-Doppler. Paediatr Anaesth 2001; 11:309–317PubMedCrossRefGoogle Scholar
  12. 12.
    Shoemaker WC, Wo CC, Chien LC, Lu K, Ahmadpour N, Belzberg H, Demetriades D. Evaluation of invasive and noninvasive hemodynamic monitoring in trauma patients. J Trauma 2006; 61:844–853; discussion 853–854PubMedGoogle Scholar
  13. 13.
    Cathignol D, Lavandier B, Muchada R. [Aortic flow measurement by transesophageal Doppler effect]. Ann Fr Anesth Reanim 1985; 4:438–443PubMedGoogle Scholar
  14. 14.
    Tibby SM, Hatherill M, Murdoch IA. Use of transesophageal Doppler ultrasonography in ventilated pediatric patients: derivation of cardiac output. Crit Care Med 2000; 28:2045–2050PubMedCrossRefGoogle Scholar
  15. 15.
    Young LE, Blissitt KJ, Bartram DH, Clutton RE, Molony V, Jones RS. Measurement of cardiac output by transoesophageal Doppler echocardiography in anaesthetized horses: comparison with thermodilution. Br J Anaesth 1996; 77:773–780PubMedGoogle Scholar
  16. 16.
    Clark DI, Ahmed AB, Baxendale BR, Moran CG. Cardiac output during hemiarthroplasty of the hip. A prospective, controlled trial of cemented and uncemented prostheses. J Bone Joint Surg Br 2001; 83:414–418PubMedCrossRefGoogle Scholar
  17. 17.
    Jaeggi P, Hofer CK, Klaghofer R, Fodor P, Genoni M, Zollinger A. Measurement of cardiac output after cardiac surgery by a new transesophageal Doppler device. J Cardiothorac Vasc Anesth 2003; 17:217–220PubMedCrossRefGoogle Scholar
  18. 18.
    Larousse E, Asehnoune K, Dartayet B, Albaladejo P, Dubousset AM, Gauthier F, Benhamou D. The hemodynamic effects of pediatric caudal anesthesia assessed by esophageal Doppler. Anesth Analg 2002; 94:1165–1168, table of contentsPubMedCrossRefGoogle Scholar
  19. 19.
    Preiser JC, Daper A, Parquier JN, Contempre B, Vincent JL. Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 1989; 15:221–223PubMedCrossRefGoogle Scholar
  20. 20.
    Weiss S, Calloway E, Cairo J, Granger W, Winslow J. Comparison of cardiac output measurements by thermodilution and thoracic electrical bioimpedance in critically ill versus non-critically ill patients. Am J Emerg Med 1995; 13:626–631PubMedCrossRefGoogle Scholar
  21. 21.
    Petersen JR, Jensen BV, Olsen F. [Impedance cardiography–non-invasive measurement of central hemodynamic data]. Ugeskr Laeger 1992; 154:255–260PubMedGoogle Scholar
  22. 22.
    O’Connell AJ, Tibballs J, Coulthard M. Improving agreement between thoracic bioimpedance and dye dilution cardiac output estimation in children. Anaesth Intensive Care 1991; 19:434–440PubMedGoogle Scholar
  23. 23.
    Martin M, Brown C, Bayard D, Demetriades D, Salim A, Gertz R, Azarow K, Wo CC, Shoemaker W. Continuous noninvasive monitoring of cardiac performance and tissue perfusion in pediatric trauma patients. J Pediatr Surg 2005; 40:1957–1963PubMedCrossRefGoogle Scholar
  24. 24.
    Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978; 93:62–66PubMedCrossRefGoogle Scholar
  25. 25.
    Tibby SM, Murdoch IA. Measurement of cardiac output and tissue perfusion. Curr Opin Pediatr 2002; 14:303–309PubMedCrossRefGoogle Scholar
  26. 26.
    Gardin JM, Tobis JM, Dabestani A, Smith C, Elkayam U, Castleman E, White D, Allfie A, Henry WL. Superiority of two-dimensional measurement of aortic vessel diameter in Doppler echocardiographic estimates of left ventricular stroke volume. J Am Coll Cardiol 1985; 6:66–74PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, Hoffmeier A, Meissner A. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 2005; 95:603–610PubMedCrossRefGoogle Scholar
  28. 28.
    Suttner S, Schollhorn T, Boldt J, Mayer J, Rohm KD, Lang K, Piper SN. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 2006; 32:2053–2058PubMedCrossRefGoogle Scholar
  29. 29.
    Critchley L, Critchley J. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit 1999; 15:85–91CrossRefGoogle Scholar
  30. 30.
    Tibballs J, Hochmann M, Osborne A, Carter B. Accuracy of the BoMED NCCOM3 bioimpedance cardiac output monitor during induced hypotension: an experimental study in dogs. Anaesth Intensive Care 1992; 20:326–331PubMedGoogle Scholar
  31. 31.
    Chan JS, Segara D, Nair P. Measurement of cardiac output with a non-invasive continuous wave Doppler device versus the pulmonary artery catheter: a comparative study. Crit Care Resusc 2006; 8:309–314PubMedGoogle Scholar
  32. 32.
    Tan HL, Pinder M, Parsons R, Roberts B, van Heerden PV. Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit. Br J Anaesth 2005; 94:287–291PubMedCrossRefGoogle Scholar
  33. 33.
    Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch Dis Child 2003; 88:46–52PubMedCrossRefGoogle Scholar
  34. 34.
    Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth 2002; 49:393–401PubMedCrossRefGoogle Scholar
  35. 35.
    Connors AF Jr., Speroff T, Dawson NV, Thomas C, Harrell FE Jr., Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr., Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. Jama 1996; 276:889–897CrossRefGoogle Scholar
  36. 36.
    Shoemaker WC, Belzberg H, Wo CC, Milzman DP, Pasquale MD, Baga L, Fuss MA, Fulda GJ, Yarbrough K, Van DeWater JP, Ferraro PJ, Thangathurai D, Roffey P, Velmahos G, Murray JA, Asensio JA, ElTawil K, Dougherty WR, Sullivan MJ, Patil RS, Adibi J, James CB, Demetriades D. Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 1998; 114:1643–1652PubMedCrossRefGoogle Scholar
  37. 37.
    Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high–risk surgical patients. Jama 1993; 270:2699–2707PubMedCrossRefGoogle Scholar
  38. 38.
    Mohan UR, Britto J, Habibi P, de Munter C, Nadel S. Noninvasive measurement of cardiac output in critically ill children. Pediatr Cardiol 2002; 23:58–61PubMedCrossRefGoogle Scholar
  39. 39.
    Meijboom EJ, Rijsterborgh H, Bot H, De Boo JA, Roelandt JR, Bom N. Limits of reproducibility of blood flow measurements by Doppler echocardiography. Am J Cardiol 1987; 59:133–137PubMedCrossRefGoogle Scholar
  40. 40.
    Su NY, Huang CJ, Tsai P, Hsu YW, Hung YC, Cheng CR. Cardiac output measurement during cardiac surgery: esophageal Doppler versus pulmonary artery catheter. Acta Anaesthesiol Sin 2002; 40:127–133PubMedGoogle Scholar
  41. 41.
    Robson SC, Boys RJ, Hunter S. Doppler echocardiographic estimation of cardiac output: analysis of temporal variability. Eur Heart J 1988; 9:313–318PubMedGoogle Scholar
  42. 42.
    Lalani AV, Lee SJ. Clinical echocardiography – an overview. Can Med Assoc J 1976; 114: 46–47, 50–54Google Scholar
  43. 43.
    Arancio F, Di Michele R, Denna V, Bertoni PD, Tosetto C, Bardon G, Carucci M, Delpini A. [Methods of determination of stroke volume from M-mode echocardiogram of the aortic valve and aortic root. A comparative evaluation]. G Ital Cardiol 1985; 15:600–607PubMedGoogle Scholar
  44. 44.
    Poutanen T, Jokinen E, Sairanen H, Tikanoja T. Left atrial and left ventricular function in healthy children and young adults assessed by three dimensional echocardiography. Heart 2003; 89:544–549PubMedCrossRefGoogle Scholar
  45. 45.
    Akiba T, Yoshikawa M, Kinoda M, Otaki S, Ishii K, Kobayashi Y, Sato T. Angiocardiographic estimation of left and right ventricular volume characteristics in normal infants and children. Tohoku J Exp Med 1985; 146:313–320PubMedCrossRefGoogle Scholar
  46. 46.
    Akiba T, Nakasato M, Sato S, Kikai A. Angiographic determination of left and right ventricular volumes and left ventricular mass in normal infants and children. Tohoku J Exp Med 1995; 177:153–160PubMedCrossRefGoogle Scholar
  47. 47.
    Poutanen T, Tikanoja T, Sairanen H, Jokinen E. Normal aortic dimensions and flow in 168 children and young adults. Clin Physiol Funct Imaging 2003; 23:224–229PubMedCrossRefGoogle Scholar
  48. 48.
    Monsel A, Salvat-Toussaint A, Durand P, Haas V, Baujard C, Rouleau P, El Aouadi S, Benhamou D, Asehnoune K. The transesophageal Doppler and hemodynamic effects of epidural anesthesia in infants anesthetized with sevoflurane and sufentanil. Anesth Analg 2007; 105:46–50PubMedCrossRefGoogle Scholar
  49. 49.
    Pianosi P, Garros D. Comparison of impedance cardiography with indirect Fick (CO2) method of measuring cardiac output in healthy children during exercise. Am J Cardiol 1996; 77:745–749PubMedCrossRefGoogle Scholar
  50. 50.
    Thangathurai D, Charbonnet C, Roessler P, Wo CC, Mikhail M, Yoahida R, Shoemaker WC. Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 1997; 11:440–444PubMedCrossRefGoogle Scholar
  51. 51.
    Woo MA, Hamilton M, Stevenson LW, Vredevoe DL. Comparison of thermodilution and transthoracic electrical bioimpedance cardiac outputs. Heart Lung 1991; 20:357–362PubMedGoogle Scholar
  52. 52.
    Osthaus WA, Huber D, Beck C, Winterhalter M, Boethig D, Wessel A, Sumpelmann R. Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatr Anaesth 2007; 17:749–755PubMedCrossRefGoogle Scholar
  53. 53.
    Boldt J, Kling D, Thiel A, Hempelmann G. [Non-invasive versus invasive cardiovascular monitoring. Determination of stroke volume and pulmonary hydration using a new bioimpedance monitor]. Anaesthesist 1988; 37:218–223PubMedGoogle Scholar
  54. 54.
    Imhoff M, Lehner JH, Lohlein D. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med 2000; 28:2812–2818PubMedCrossRefGoogle Scholar
  55. 55.
    Braden DS, Leatherbury L, Treiber FA, Strong WB. Noninvasive assessment of cardiac output in children using impedance cardiography. Am Heart J 1990; 120:1166–1172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephan Schubert
    • 1
  • Thomas Schmitz
    • 1
  • Markus Weiss
    • 2
  • Nicole Nagdyman
    • 1
  • Michael Huebler
    • 3
  • Vladimir Alexi-Meskishvili
    • 3
  • Felix Berger
    • 1
  • Brigitte Stiller
    • 1
    • 4
  1. 1.Department of Congenital Heart Disease/Pediatric CardiologyDeutsches Herzzentrum BerlinBerlinGermany
  2. 2.Department of AnesthesiaUniversity Children’s HospitalZurichSwitzerland
  3. 3.Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum BerlinBerlinGermany
  4. 4.Department of Congenital Heart Disease/Pediatric CardiologyUniversity Children’s Hospital FreiburgFreiburgGermany

Personalised recommendations