Journal of Clinical Monitoring and Computing

, Volume 20, Issue 6, pp 445–472 | Cite as

Using EEG to monitor anesthesia drug effects during surgery

Specialty Section on Surgical Neuromonitoring

Abstract

The use of processed electroencephalography (EEG) using a simple frontal lead system has been made available for assessing the impact of anesthetic medications during surgery. This review discusses the basic principles behind these devices. The foundations of anesthesia monitoring rest on the observations of Guedel with ether that the depth of anesthesia relates to the cortical, brainstem and spinal effects of the anesthetic agents. Anesthesiologists strive to have a patient who is immobile, is unconscious, is hemodynamically stable and who has no intraoperative awareness␣or recall. These anesthetic management principles apply today, despite the absence of ether from the available anesthetic medications. The use of the EEG as a supplement to the usual monitoring techniques rests on the observation that anesthetic medications all alter the synaptic function which produces the EEG. Frontal EEG can be viewed as a surrogate for the drug effects on the entire central nervous system (CNS). Using mathematical processing techniques, commercial EEG devices create an index usually between 0 and 100 to characterize this drug effect. Critical aspects of memory formation occur in the frontal lobes making EEG monitoring in this area a possible method to assess risk of recall. Integration of processed EEG monitoring into anesthetic management is evolving and its ability to characterize all of the anesthetic effects on the CNS (in particular awareness and recall) and improve decision making is under study.

Keywords

monitoring anesthesia electroencephalography. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB The incidence of awareness during anesthesia: a multicenter United States study [see comment]Anesth Analg2004;99:833–839PubMedCrossRefGoogle Scholar
  2. 2.
    Monk TG, Saini V, Weldon BC, Sigl JC Anesthetic management and one-year mortality after noncardiac surgery [see comment] Anesth Analg2005;100:4–10PubMedCrossRefGoogle Scholar
  3. 3.
    Guedel A 1937 Inhalational anesthesia. A fundamental guide New York, Macmillan CompanyGoogle Scholar
  4. 4.
    Eger EI II, Saidman LJ, Brandstater B Minimum alveolar anesthetic concentration: a standard of anesthetic potency Anesthesiology 1965;26:756–763PubMedGoogle Scholar
  5. 5.
    Chortkoff BS, Eger EI II, Crankshaw DP, Gonsowski CT, Dutton RC, Ionescu P Concentrations of desflurane and propofol that suppress response to command in humans Anesth Analg 1995;81:737–743PubMedCrossRefGoogle Scholar
  6. 6.
    Chortkoff BS, Gonsowski CT, Bennett HL, Levinson B, Crankshaw DP, Dutton RC, Ionescu P, Block RI, Eger EI II: Subanesthetic concentrations of desflurane, propofol suppress recall of emotionally charged information [see comment]. Anesth Analg 1995;81:728–736PubMedCrossRefGoogle Scholar
  7. 7.
    Angel A The G. L. Brown lecture. Adventures in anaesthesia Exp Physiol 1991;76:1–38PubMedGoogle Scholar
  8. 8.
    Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, Schwam EM, Siegel JL Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam J Clin Psychopharmacol 1990;10:244–251PubMedCrossRefGoogle Scholar
  9. 9.
    Ting CH, Angel A, Linkens DA Neuronal network modelling of the effects of anaesthetic agents on somatosensory pathways Biol Cybernet 2003;88:99–107CrossRefGoogle Scholar
  10. 10.
    Sinensky M, Pinkerton F, Sutherland E, Simon FR Rate limitation of (Na+ + K+)-stimulated adenosinetriphosphatase by membrane acyl chain ordering Proc Natl Acad Sci USA1979;76:4893–4897PubMedCrossRefGoogle Scholar
  11. 11.
    Firestone LL, Alifimoff JK, Miller KW Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering? Mol Pharmacol1994;46:508–515PubMedGoogle Scholar
  12. 12.
    Goto T, Nakata Y, Morita S How does xenon produce anesthesia? A perspective from electrophysiological studies Int Anesthesiol Clin2001;39:85–94PubMedCrossRefGoogle Scholar
  13. 13.
    Jones MV, Harrison NL Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons J Neurophysiol1993;70:1339–1349PubMedGoogle Scholar
  14. 14.
    Cheng G, Kendig JJ Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors Anesthesiology2000;93:1075–1084PubMedCrossRefGoogle Scholar
  15. 15.
    Hales TG, Lambert JJ The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones Br J Pharmacol1991;104:619–628PubMedGoogle Scholar
  16. 16.
    Tomlin SL, Jenkins A, Lieb WR, Franks NP Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals [see comment] Anesthesiology1998;88:708–717PubMedCrossRefGoogle Scholar
  17. 17.
    Bai D, Pennefather PS, MacDonald JF, Orser BA The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors J Neurosci1999;19:10635–10646PubMedGoogle Scholar
  18. 18.
    Perouansky M, Hemmings Jr HC. Presynaptic actions of general anesthetics. Humana Press, 2003Google Scholar
  19. 19.
    Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR How does xenon produce anaesthesia? Nature1998;396:324PubMedCrossRefGoogle Scholar
  20. 20.
    Jevtovic-Todorovic V, Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin [see comment] Nat Med1998;4:460–463PubMedCrossRefGoogle Scholar
  21. 21.
    Raines DE, Claycomb RJ, Scheller M, Forman SA Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels Anesthesiology2001;95:470–477PubMedCrossRefGoogle Scholar
  22. 22.
    Zeilhofer HU, Swandulla D, Geisslinger G, Brune K Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons Eur J Pharmacol1992;213:155–158PubMedCrossRefGoogle Scholar
  23. 23.
    Flood P, Krasowski MD Intravenous anesthetics differentially modulate ligand-gated ion channels Anesthesiology2000;92:1418–1425PubMedCrossRefGoogle Scholar
  24. 24.
    Campagna JA, Miller KW, Forman SA Mechanisms of actions of inhaled anesthetics [see comment] N Engl J Med2003;348:2110–2124PubMedCrossRefGoogle Scholar
  25. 25.
    Hemmings H, Akabas M, Goldstein P, et al. Emerging molecular mechanisms of general anesthetic action Trends Pharmacol Sci 2005;26:503–510PubMedCrossRefGoogle Scholar
  26. 26.
    Raja SN, Moscicki JC, Woodside JR Jr, DiFazio CA The effect of acute phencyclidine administration on cyclopropane requirement (MAC) in rats Anesthesiology1982;56:275–279PubMedCrossRefGoogle Scholar
  27. 27.
    Lin LH, Leonard S, Harris RA Enflurane inhibits the function of mouse and human brain phosphatidylinositol-linked acetylcholine and serotonin receptors expressed in Xenopus oocytes Mol Pharmacol 1993;43:941–948PubMedGoogle Scholar
  28. 28.
    Puil E, El-Beheiry H Anaesthetic suppression of transmitter actions in neocortex Br J Pharmacol1990;101:61–66PubMedGoogle Scholar
  29. 29.
    Carl V, Moroni F General anesthetics inhibit the responses induced by glutamate receptor agonists in the mouse cortex Neurosci Lett1992;146:21–24CrossRefGoogle Scholar
  30. 30.
    Violet J, Downie D, Nakisa R, Lieb WR, Franks NP Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics Anesthesiology1997;86:866–874PubMedCrossRefGoogle Scholar
  31. 31.
    Flood P, Ramirez-Latorre J, Role L Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected Anesthesiology1997;86:859–865PubMedCrossRefGoogle Scholar
  32. 32.
    Angel A Central neuronal pathways and the process of anaesthesia Br J Anaesth1993;71:148–163PubMedCrossRefGoogle Scholar
  33. 33.
    Hobson JA, McCarley RW, Pivik RT, Freedman R Selective firing by cat pontine brain stem neurons in desynchronized sleep J Neurophysiol1974;37:497–511PubMedGoogle Scholar
  34. 34.
    Goodman SJ, Mann PE Reticular and thalamic multiple unit activity during wakefulness, sleep and anesthesia Exp Neurol1967;19:11–24PubMedCrossRefGoogle Scholar
  35. 35.
    Kendig JJ, MacIver MB, Roth SH Anesthetic actions in the hippocampal formation Ann N Y Acad Sci1991;625:37–53PubMedCrossRefGoogle Scholar
  36. 36.
    Wakasugi M, Hirota K, Roth SH, Ito Y The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CA1 of the rat hippocampus in vitro Anesth Analg1999;88:676–680PubMedCrossRefGoogle Scholar
  37. 37.
    Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Rampil IJ, Trudell J, Vissel B, Eger EI II: Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration [see comment] [erratum appears in Anesth Analg. 2004 Jan;98(1):29]. Anesth Analg 2003; 97: 718-40Google Scholar
  38. 38.
    Veselis RA, Feshchenko VA, Reinsel RA, Dnistrian AM, Beattie B, Akhurst TJ Thiopental and propofol affect different regions of the brain at similar pharmacologic effects Anesth Analg2004;99:399–408PubMedGoogle Scholar
  39. 39.
    Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway [see comment] Nat Neurosci2002;5:979–984PubMedCrossRefGoogle Scholar
  40. 40.
    Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL Emerging molecular mechanisms of general anesthetic action Trends Pharmacol Sci2005;26:503–510PubMedCrossRefGoogle Scholar
  41. 41.
    John ER, Prichep LS The anesthetic cascade: a theory of how anesthesia suppresses consciousness Anesthesiology2005;102:447–471PubMedCrossRefGoogle Scholar
  42. 42.
    Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons Mol Pharmacol2001;59:814–824PubMedGoogle Scholar
  43. 43.
    Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors Proc Natl Acad Sci USA2004;101:3662–3667PubMedCrossRefGoogle Scholar
  44. 44.
    Caraiscos VB, Newell JG, You-Ten KE, Elliott EM, Rosahl TW, Wafford KA, MacDonald JF, Orser BA Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane J Neurosci2004;24:8454–8458PubMedCrossRefGoogle Scholar
  45. 45.
    Gajraj RJ, Doi M, Mantzaridis H, Kenny GN Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness Br J Anaesth1998;80:46–52PubMedGoogle Scholar
  46. 46.
    Antognini JF, Carstens E In vivo characterization of clinical anaesthesia and its components Br J Anaesth2002;89:156–166PubMedCrossRefGoogle Scholar
  47. 47.
    Rampil IJ Anesthetic potency is not altered after hypothermic spinal cord transection in rats Anesthesiology1994;80:606–610PubMedCrossRefGoogle Scholar
  48. 48.
    Rampil IJ, Mason P, Singh H Anesthetic potency (MAC) is independent of forebrain structures in the rat Anesthesiology1993;78:707–712PubMedCrossRefGoogle Scholar
  49. 49.
    Todd MM, Weeks JB, Warner DS A focal cryogenic brain lesion does not reduce the minimum alveolar concentration for halothane in rats Anesthesiology1993;79:139–143PubMedCrossRefGoogle Scholar
  50. 50.
    McFarlane C, Warner DS, Dexter F, Ludwig PA Minimum alveolar concentration for halothane in the rat is resistant to effects of forebrain ischemia and reperfusion Anesthesiology1994;81:1206–1211PubMedCrossRefGoogle Scholar
  51. 51.
    Collins JG, Kendig JJ, Mason P Anesthetic actions within the spinal cord: contributions to the state of general anesthesia Trends Neurosci1995;18:549–553PubMedCrossRefGoogle Scholar
  52. 52.
    Wong SM, Cheng G, Homanics GE, Kendig JJ Enflurane actions on spinal cords from mice that lack the beta3 subunit of the GABA(A) receptor Anesthesiology2001;95:154–164PubMedCrossRefGoogle Scholar
  53. 53.
    Quinlan JJ, Homanics GE, Firestone LL Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor Anesthesiology1998;88:775–780PubMedCrossRefGoogle Scholar
  54. 54.
    Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit FASEB J2003;17:250–252PubMedGoogle Scholar
  55. 55.
    Freye E, Levy JV Cerebral monitoring in the operating room and the intensive care unit: an introductory for the clinician and a guide for the novice wanting to open a window to the brain. Part I: The electroencephalogram J Clin Monit Comput2005;19:1–76PubMedCrossRefGoogle Scholar
  56. 56.
    Schneider G, Sebel PS Monitoring depth of anaesthesia Eur J Anaesthesiol - Suppl1997;15:21–28PubMedCrossRefGoogle Scholar
  57. 57.
    Wallace BE, Wagner AK, Wagner EP, McDeavitt JT A history and review of quantitative electroencephalography in traumatic brain injury J Head Trauma Rehabil2001;16:165–190PubMedCrossRefGoogle Scholar
  58. 58.
    Alkire MT, Haier RJ, Fallon JH Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness [see comment] Conscious Cogn2000;9:370–386PubMedCrossRefGoogle Scholar
  59. 59.
    Misulis K Essentials of clinical neurophysiology. Newton, MA, Butterworth-Heinemann, 1997Google Scholar
  60. 60.
    Rhoney DH, Parker D Jr Use of sedative and analgesic agents in neurotrauma patients: effects on cerebral physiology Neurol Res 2001;23:237–259PubMedCrossRefGoogle Scholar
  61. 61.
    Crippen D Using bedside EEGs to monitor sedation during neuromuscular blockade J Crit Ill 1997;12:519–524Google Scholar
  62. 62.
    Llinas RR, Leznik E, Urbano FJ Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices Proc Natl Acad Sci USA2002;99:449–454PubMedCrossRefGoogle Scholar
  63. 63.
    Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ Perception’s shadow: long-distance synchronization of human brain activity [see comment] Nature 1999;397:430–433PubMedCrossRefGoogle Scholar
  64. 64.
    Thompson E, Varela F Radical embodiment: Neural dynamics and consciousness Trends Cogn 2001;5:418–425CrossRefGoogle Scholar
  65. 65.
    Jensen E, Litvan H, Struys M, Martinez-Vasquez P Pitfalls and challenges when assessing the depth of hypnosis during general anaesthesia by clinical signs and electronic indices Acta Anaesthesiol Scand2004;48:1260–1267PubMedCrossRefGoogle Scholar
  66. 66.
    Stockard J, Bickford R The neurophysiology of anesthesia. In: Gordon E (ed): A basis and practice of neuroanesthesia. New York: Excerpta Medica, 1981, 3–50Google Scholar
  67. 67.
    Newman J Thalamic contributions to attention and consciousness [comment] Conscious Cogn1995;4:172–193PubMedCrossRefGoogle Scholar
  68. 68.
    Tallon-Baudry C: Oscillatory synchrony as a signature for the unity of visual experience. Consciousness and cognition in 4th conference of the association for the scientific study of consciousness. 2000; S25-6Google Scholar
  69. 69.
    Rampil IJ A primer for EEG signal processing in anesthesia [see comment] Anesthesiology1998;89:980–1002PubMedCrossRefGoogle Scholar
  70. 70.
    Winters WD Effects of drugs on the electrical activity of the brain: anesthetics Annu Rev Pharmacol Toxicol1976;16:413–426PubMedCrossRefGoogle Scholar
  71. 71.
    March PA, Muir WW Bispectral analysis of the electroencephalogram: a review of its development and use in anesthesia Vet Anaesth Analg2005;32:241–255PubMedCrossRefGoogle Scholar
  72. 72.
    John ER, Prichep LS, Kox W, Valdes-Sosa P, Bosch-Bayard J, Aubert E, Tom M, di Michele F, Gugino LD: Invariant reversible QEEG effects of anesthetics [see comment] [erratum appears in Conscious Cogn 2002 Mar;11(1):138 Note: diMichele F [corrected to di Michele F]]. Conscious Cogn 2001; 10: 165-83Google Scholar
  73. 73.
    Baars JH, Tas S, Herold KF, Hadzidiakos DA, Rehberg B The suppression of spinal F-waves by propofol does not predict immobility to painful stimuli in humans{dagger} Br J Anaesth2006;96:118–126PubMedCrossRefGoogle Scholar
  74. 74.
    Baars BJ The brain basis of a “consciousness monitor” scientific and medical significance [comment] Conscious Cogn2001;10:159–164; discussion 246-58PubMedCrossRefGoogle Scholar
  75. 75.
    Bickford R Automatic electroencephalographic control of general anesthesia. Electroencephalogr Clin Neurophysiol1950;2:93–96CrossRefGoogle Scholar
  76. 76.
    Traast HS, Kalkman CJ Electroencephalographic characteristics of emergence from propofol/sufentanil total intravenous anesthesia Anesth Analg 1995;81:366–371PubMedCrossRefGoogle Scholar
  77. 77.
    Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care Can J Anaesth1999;46:235–239PubMedCrossRefGoogle Scholar
  78. 78.
    Bauerle K, Greim CA, Schroth M, Geisselbrecht M, Kobler A, Roewer N: Prediction of depth of sedation and anaesthesia by the Narcotrend EEG monitor [erratum appears in Br J Anaesth. 2004 Jun;92(6):912]. Br J Anaesth 2004; 92: 841-45Google Scholar
  79. 79.
    Berkenbosch JW, Fichter CR, Tobias JD The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit Anesth Analg2002;94:506–511; table of contentsPubMedCrossRefGoogle Scholar
  80. 80.
    Ibrahim AE, Taraday JK, Kharasch ED Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol Anesthesiology2001;95:1151–1159PubMedCrossRefGoogle Scholar
  81. 81.
    Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers Anesthesiology1997;86:836–847PubMedCrossRefGoogle Scholar
  82. 82.
    Katoh T, Suzuki A, Ikeda K Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane Anesthesiology1998;88:642–650PubMedCrossRefGoogle Scholar
  83. 83.
    Myles PS, Leslie K, McNeil J, Forbes A, Chan MTV Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial [see comment] Lancet 2004;363:1757–1763PubMedCrossRefGoogle Scholar
  84. 84.
    McCulloch TJ Use of BIS monitoring was not associated with a reduced incidence of awareness [comment] Anesth Analg2005;100:1221; author reply 1221-222PubMedCrossRefGoogle Scholar
  85. 85.
    Drover DR, Lemmens HJ, Pierce ET, Plourde G, Loyd G, Ornstein E, Prichep LS, Chabot RJ, Gugino L Patient State Index: titration of delivery and recovery from propofol, alfentanil, and nitrous oxide anesthesia Anesthesiology2002;97:82–89PubMedCrossRefGoogle Scholar
  86. 86.
    Glass PS, Bloom M, Kearse L, Roscow C, Sebel P, Manberg P Bispectral Analysis measures sedation and memory effects of propofol, midazolam, isoflurane and alfentanil in healthy volunteers Anesthesiology1997;86:836–847PubMedCrossRefGoogle Scholar
  87. 87.
    Gan TJ, Glass PS, Windsor A, Payne F, Rosow C, Sebel P, Manberg P Bispectral Index monitoring allows faster emergence and improved recovery from propofol, alfenanil, and nitrous oxide anesthesia, BISI Utility Study GroupAnesthesiology1997;87:842–848CrossRefGoogle Scholar
  88. 88.
    Gurses E, Sungurtekin H, Tomatir E, Dogan H Assessing propofol induction of anesthesia dose using bispectral index analysis. [see comment]Anesth Analg2004;98:128–131PubMedCrossRefGoogle Scholar
  89. 89.
    Muthuswamy J, Roy RJ The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia IEEE Trans Biomed Eng1999;46:291–299PubMedCrossRefGoogle Scholar
  90. 90.
    Sebel PS, Bowles SM, Saini V, Chamoun N EEG bispectrum predicts movement during thiopental/isoflurane anesthesia J Clin Monit1995;11:83–91PubMedCrossRefGoogle Scholar
  91. 91.
    Huang L, Yu P, Ju F, Cheng J Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia Med Eng Phys2003;25:321–327PubMedCrossRefGoogle Scholar
  92. 92.
    Muncaster ARG, Sleigh JW, Williams M Changes in consciousness, conceptual memory, and quantitative electroencephalographical measures during recovery from sevoflurane- and remifentanil-based anesthesia [see comment] Anesth Analg2003;96:720–725PubMedCrossRefGoogle Scholar
  93. 93.
    Iselin-Chaves IA, Flaishon R, Sebel PS, Howell S, Gan TJ, Sigl J, Ginsberg B, Glass PS The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the Bispectral Index Anesth Analg1998;87:949–955PubMedCrossRefGoogle Scholar
  94. 94.
    Ortolani O, Conti A, Di Filippo A, Adembri C, Moraldi E, Evangelisti A, Maggini M, Roberts SJ EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia Br J Anaesth2002;88:644–648PubMedCrossRefGoogle Scholar
  95. 95.
    ASA TF Practice advisory for intraoperative awareness an brain function monitoring Anesthesiology2006;104:847–864CrossRefGoogle Scholar
  96. 96.
    Smith WD, Dutton RC, Smith NT Measuring the performance of anesthetic depth indicators Anesthesiology1996;84:38–51PubMedCrossRefGoogle Scholar
  97. 97.
    Kiyama S, Takeda J Effect of extradural analgesia on the paradoxical arousal response of the electroencephalogram Br J Anaesth1997;79:750–753PubMedGoogle Scholar
  98. 98.
    Ishiyama T, Kashimoto S, Oguchi T, Yamaguchi T, Okuyama K, Kumazawa T Epidural ropivacaine anesthesia decreases the bispectral index during the awake phase and sevoflurane general anesthesia Anesth Analg2005;100:728–732PubMedCrossRefGoogle Scholar
  99. 99.
    Doufas AG, Wadhwa A, Shah YM, Lin CM, Haugh GS, Sessler DI Block-dependent sedation during epidural anaesthesia is associated with delayed brainstem conduction Br J Anaesth2004;93:228–234PubMedCrossRefGoogle Scholar
  100. 100.
    Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia Anesthesiology2004;100:818–825PubMedCrossRefGoogle Scholar
  101. 101.
    Shono A, Sakura S, Saito Y, Doi K, Nakatani T Comparison of 1% and 2% lidocaine epidural anaesthesia combined with sevoflurane general anaesthesia utilizing a constant bispectral index Br J Anaesth2003;91:825–829PubMedCrossRefGoogle Scholar
  102. 102.
    Ishiyama T, Oguchi T, Iijima T, Matsukawa T, Kashimoto S, Kumazawa T Ephedrine, but not phenylephrine, increases bispectral index values during combined general and epidural anesthesia Anesth Analg2003;97:780–784PubMedCrossRefGoogle Scholar
  103. 103.
    Koo M, Sabate A, Dalmau A, Camprubi I Sevoflurane requirements during coloproctologic surgery: difference between two different epidural regimens J Clin Anesth2003;15:97–102PubMedCrossRefGoogle Scholar
  104. 104.
    Morley AP, Derrick J, Seed PT, Tan PE, Chung DC, Short TG Isoflurane dosage for equivalent intraoperative electroencephalographic suppression in patients with and without epidural blockade Anesth Analg2002;95:1412–1418PubMedCrossRefGoogle Scholar
  105. 105.
    Ge SJ, Zhuang XL, Wang YT, Wang ZD, Li HT Changes in the rapidly extracted auditory evoked potentials index and the bispectral index during sedation induced by propofol or midazolam under epidural block Br J Anaesth2002;89:260–264PubMedCrossRefGoogle Scholar
  106. 106.
    Absalom AR, Sutcliffe N, Kenny GN Closed-loop control of anesthesia using Bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia Anesthesiology2002;96:67–73PubMedCrossRefGoogle Scholar
  107. 107.
    Hodgson PS, Liu SS Epidural lidocaine decreases sevoflurane requirement for adequate depth of anesthesia as measured by the Bispectral Index monitor Anesthesiology2001;94:799–803PubMedCrossRefGoogle Scholar
  108. 108.
    Kurup V, Ramani R, Atanassoff PG Sedation after spinal anesthesia in elderly patients: a preliminary observational study with the PSA-4000 Can J Anaesth2004;51:562–565PubMedCrossRefGoogle Scholar
  109. 109.
    Barr G, Anderson RE, Owall A, Jakobsson JG Effects on the bispectral index during medium-high dose fentanyl induction with or without propofol supplement Acta Anaesthesiol Scand2000;44:807–811PubMedCrossRefGoogle Scholar
  110. 110.
    Kreuer S, Bruhn J, Larsen R, Bialas P, Wilhelm W Comparability of Narcotrend index and bispectral index during propofol anaesthesia Br J Anaesth2004;93:235–240PubMedCrossRefGoogle Scholar
  111. 111.
    Mi WD, Sakai T, Takahashi S, Matsuki A Haemodynamic and electroencephalograph responses to intubation during induction with propofol or propofol/fentanylCan J Anaesth1998;45:19–22PubMedCrossRefGoogle Scholar
  112. 112.
    Nishiyama T, Matsukawa T, Hanaoka K: A comparison of the clinical usefulness of three different electroencephalogram monitors: Bispectral Index, processed electroencephalogram, and Alaris auditory evoked potentials Anesth Analg2004;98:1341–1345PubMedCrossRefGoogle Scholar
  113. 113.
    Lysakowski C, Dumont L, Pellegrini M, Clergue F, Tassonyi E Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia Br J Anaesth2001;86:523–527PubMedCrossRefGoogle Scholar
  114. 114.
    Strachan AN, Edwards ND Randomized placebo-controlled trial to assess the effect of remifentanil and propofol on bispectral index and sedation Br J Anaesth2000;84:489–490PubMedGoogle Scholar
  115. 115.
    Medical A: Bis VistaTM Monitoring System operating manual. 2006Google Scholar
  116. 116.
    Struys M, Versichelen L, Mortier E, Ryckaert D, De Mey JC, De Deyne C, Rolly G Comparison of spontaneous frontal EMG, EEG power spectrum and bispectral index to monitor propofol drug effect and emergence Acta Anaesthesiol Scand1998;42:628–636PubMedCrossRefGoogle Scholar
  117. 117.
    Sleigh JW, Steyn-Ross DA, Steyn-Ross ML, Williams ML, Smith P Comparison of changes in electroencephalographic measures during induction of general anaesthesia: influence of the gamma frequency band and electromyogram signal Br J Anaesth2001;86:50–58PubMedCrossRefGoogle Scholar
  118. 118.
    Renna M, Wigmore T, Mofeez A, Gillbe C Biasing effect of the electromyogram on BIS: a controlled study during high-dose fentanyl induction J Clin Monit Comput2002;17:377–381PubMedCrossRefGoogle Scholar
  119. 119.
    Chen X, Tang J, White PF, Wender RH, Ma H, Sloninsky A, Kariger R A comparison of patient state index and bispectral index values during the perioperative period Anesth Analg2002;95:1669–1674PubMedCrossRefGoogle Scholar
  120. 120.
    Watson BD, Kane-Gill SL Sedation assessment in critically ill adults: 2001–2004 update Ann Pharmacother 2004;38:1898–1906PubMedCrossRefGoogle Scholar
  121. 121.
    Dutton RC, Smith WD, Smith NT Wakeful response to command indicates memory potential during emergence from general anesthesia J Clin Monit 1995;11:35–40PubMedCrossRefGoogle Scholar
  122. 122.
    Bruhn J, Bouillon TW, Radulescu L, Hoeft A, Bertaccini E, Shafer SL Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of “anesthetic depth” during coadministration of propofol and remifentanil Anesthesiology2003;98:621–627PubMedCrossRefGoogle Scholar
  123. 123.
    Vanluchene ALG, Struys MMRF, Heyse BEK, Mortier EP Spectral entropy measurement of patient responsiveness during propofol and remifentanil. A comparison with the bispectral index Br J Anaesth2004;93:645–654PubMedCrossRefGoogle Scholar
  124. 124.
    Schmidt GN, Bischoff P, Standl T, Hellstern A, Teuber O, Schulte Esch J Comparative evaluation of the Datex-Ohmeda S/5 entropy module and the Bispectral Index monitor during propofol-remifentanil anesthesiaAnesthesiology2004;101:1283–1290PubMedCrossRefGoogle Scholar
  125. 125.
    Grouven U, Beger FA, Schultz B, Schultz A Correlation of Narcotrend Index, entropy measures, and spectral parameters with calculated propofol effect-site concentrations during induction of propofol-remifentanil anaesthesia J Clin Monit Comput2004;18:231–240PubMedCrossRefGoogle Scholar
  126. 126.
    Schultz B, Grouven U, Schultz A Automatic classification algorithms of the EEG monitor Narcotrend for routinely recorded EEG data from general anaesthesia: a validation study Biomed Tech2002;47:9–13CrossRefGoogle Scholar
  127. 127.
    Schultz B, Kreuer S, Wilhelm W, Grouven U, Schultz A The Narcotrend monitor. Development and interpretation algorithmsAnaesthesist2003;52:1143–1148PubMedCrossRefGoogle Scholar
  128. 128.
    Schmidt GN, Bischoff P, Standl T, Jensen K, Voigt M, Schulte Am Esch J Narcotrend and Bispectral Index monitor are superior to classic electroencephalographic parameters for the assessment of anesthetic states during propofol-remifentanil anesthesia Anesthesiology2003;99:1072–1077PubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt GN, Bischoff P, Standl T, Voigt M, Papavero L, Schulte am Esch J Narcotrend, bispectral index, and classical electroencephalogram variables during emergence from propofol/remifentanil anesthesia Anesth Analg2002;95:1324–1330PubMedCrossRefGoogle Scholar
  130. 130.
    Kreuer S, Bruhn J, Larsen R, Grundmann U, Shafer SL, Wilhelm W Application of Bispectral Index and Narcotrend index to the measurement of the electroencephalographic effects of isoflurane with and without burst suppression Anesthesiology2004;101:847–854PubMedCrossRefGoogle Scholar
  131. 131.
    Weber F, Gruber M, Taeger K The correlation of the Narcotrend Index and classical electroencephalographic parameters with endtidal desflurane concentrations and hemodynamic parameters in different age groups Paediatr Anaesth2005;15:378–384PubMedCrossRefGoogle Scholar
  132. 132.
    White PF, Tang J, Ma H, Wender RH, Sloninsky A, Kariger R Is the patient state analyzer with the PSArray2 a cost-effective alternative to the bispectral index monitor during the perioperative period?Anesth Analg2004;99:1429–1435; table of contentsPubMedCrossRefGoogle Scholar
  133. 133.
    Chisholm CJ, Zurica J, Mironov D, Sciacca RR, Ornstein E, Heyer EJ Comparison of electrophysiologic monitors with clinical assessment of level of sedation Mayo Clin Proc2006;81:46–52PubMedCrossRefGoogle Scholar
  134. 134.
    Schneider G, Gelb AW, Schmeller B, Tschakert R, Kochs E Detection of awareness in surgical patients with EEG-based indices–bispectral index and patient state index Br J Anaesth2003;91:329–335PubMedCrossRefGoogle Scholar
  135. 135.
    Prichep LS, Gugino LD, John ER, Chabot RJ, Howard B, Merkin H, Tom ML, Wolter S, Rausch L, Kox WJ The Patient State Index as an indicator of the level of hypnosis under general anaesthesia Br J Anaesth2004;92:393–399PubMedCrossRefGoogle Scholar
  136. 136.
    Davidson AJ, Huang GH, Czarnecki C, Gibson MA, Stewart SA, Jamsen K, Stargatt R Awareness during anesthesia in children: a prospective cohort study [see comment] Anesth Analg2005;100:653–661PubMedCrossRefGoogle Scholar
  137. 137.
    Agarwal G, Sikh SS Awareness during anaesthesia. A prospective study Br J Anaesth1977;49:835–838PubMedCrossRefGoogle Scholar
  138. 138.
    Breckenridge JL, Aitkenhead AR Awareness during anaesthesia: a review Ann Roy College Surgeons England1983;65:93–96Google Scholar
  139. 139.
    Schwender D, Daunderer M, Kunze-Kronawitter H, Klasing S, Poppel E, Peter K Awareness during general anaesthesia–incidence, clinical relevance and monitoring Acta Anaesthesiol Scand Suppl1997;111:313–314PubMedGoogle Scholar
  140. 140.
    Sandin RH, Enlund G, Samuelsson P, Lennmarken C Awareness during anaesthesia: a prospective case study [see comment] Lancet2000;355:707–711PubMedCrossRefGoogle Scholar
  141. 141.
    Ekman A, Lindholm ML, Lennmarken C, Sandin R Reduction in the incidence of awareness using BIS monitoring Acta Anaesthesiol Scand2004;48:20–26PubMedCrossRefGoogle Scholar
  142. 142.
    Halliburton JR Awareness during general anesthesia: new technology for an old problem CRNA1998;9:39–43PubMedGoogle Scholar
  143. 143.
    Huang GH, Davidson AJ, Stargatt R Dreaming during anaesthesia in children: incidence, nature and associations Anaesthesia2005;60:854–861PubMedCrossRefGoogle Scholar
  144. 144.
    Ghoneim MM Drugs and human memory (part 2). Clinical, theoretical, and methodologic issues [see comment] Anesthesiology2004;100:1277–1297PubMedCrossRefGoogle Scholar
  145. 145.
    Ghoneim MM Drugs and human memory (part 1): Clinical, theoretical, and methodologic issues Anesthesiology2004;100:987–1002PubMedCrossRefGoogle Scholar
  146. 146.
    Budson AE, Price BH Memory dysfunction N Engl J Med2005;352:692–699PubMedCrossRefGoogle Scholar
  147. 147.
    Fletcher PC, Henson RN Frontal lobes and human memory: insights from functional neuroimagingBrain2001;124:849–881PubMedCrossRefGoogle Scholar
  148. 148.
    Maril A, Simons JS, Mitchell JP, Schwartz BL, Schacter DL Feeling-of-knowing in episodic memory: an event-related fMRI study Neuroimage 2003;18:827–836PubMedCrossRefGoogle Scholar
  149. 149.
    Fletcher PC, Anderson JM, Shanks DR, Honey R, Carpenter TA, Donovan T, Papadakis N, Bullmore ET Responses of human frontal cortex to surprising events are predicted by formal associative learning theory Nat Neurosci2001;4:1043–1048PubMedCrossRefGoogle Scholar
  150. 150.
    Simons JS, Spiers HJ Prefrontal and medial temporal lobe interactions in long-term memoryNat Rev Neurosci2003;4:637–648PubMedCrossRefGoogle Scholar
  151. 151.
    Nyberg L, Cabezza R: Brain imaging of memory. New York, Oxford University Press, 2000Google Scholar
  152. 152.
    Cahill L, McGaugh JL A novel demonstration of enhanced memory associated with emotional arousal Consciousness & Cognition 1995;4:410–421CrossRefGoogle Scholar
  153. 153.
    Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL The amygdala and emotional memory Nature1995;377:295–296PubMedCrossRefGoogle Scholar
  154. 154.
    Black P, Jaaskelainen J, Chabrerie A, Golby A, Gugino L Minimalist approach: functional mappingClin Neurosurg2002;49:90–102PubMedGoogle Scholar
  155. 155.
    Curran HV, Pooviboonsuk P, Dalton JA, Lader MH Differentiating the effects of centrally acting drugs on arousal and memory: an event-related potential study of scopolamine, lorazepam and diphenhydraminePsychopharmacology1998;135:27–36PubMedCrossRefGoogle Scholar
  156. 156.
    Green JF, McElholm A, King DJ A comparison of the sedative and amnestic effects of chlorpromazine and lorazepamPsychopharmacology1996;128:67–73PubMedCrossRefGoogle Scholar
  157. 157.
    Ranta SOV, Herranen P, Hynynen M Patients’ conscious recollections from cardiac anesthesia J Cardiothorac Vas Anesth2002;16:426–430CrossRefGoogle Scholar
  158. 158.
    Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions Anesth Analg2000;90:699–705PubMedCrossRefGoogle Scholar
  159. 159.
    Liu J, Singh H, White PF Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation Anesth Analg1997;84:185–189PubMedCrossRefGoogle Scholar
  160. 160.
    Bulach R, Myles PS, Russnak M Double-blind randomized controlled trial to determine extent of amnesia with midazolam given immediately before general anaesthesia Br J Anaesth2005;94:300–305PubMedCrossRefGoogle Scholar
  161. 161.
    Gorissen ME, Curran HV, Eling PA Proactive interference and temporal context encoding after diazepam intake Psychopharmacology1998;138:334–343PubMedCrossRefGoogle Scholar
  162. 162.
    Deeprose C, Andrade J, Harrison D, Edwards N Unconscious auditory priming during surgery with propofol and nitrous oxide anaesthesia: a replication Br J Anaesth2005;94:57–62PubMedCrossRefGoogle Scholar
  163. 163.
    Sidi A, Halimi P, Cotev S Estimating anesthetic depth by electroencephalography during anesthetic induction and intubation in patients undergoing cardiac surgery J Clin Anesth1990;2:101–107PubMedCrossRefGoogle Scholar
  164. 164.
    Chin KJ, Yeo SW A BIS-guided study of sevoflurane requirements for adequate depth of anaesthesia in Caesarean sectionAnaesthesia2004;59:1064–1068PubMedCrossRefGoogle Scholar
  165. 165.
    Kerssens C, Klein J, Bonke B Awareness: monitoring versus remembering what happened Anesthesiology2003;99:570–575PubMedCrossRefGoogle Scholar
  166. 166.
    Ranta SOV, Hynynen M, Rasanen J Application of artificial neural networks as an indicator of awareness with recall during general anaesthesiaJ Clin Monit Comput2002;17:53–60PubMedCrossRefGoogle Scholar
  167. 167.
    Ropcke H, Rehberg B, Koenen-Bergmann M, Bouillon T, Bruhn J, Hoeft A Surgical stimulation shifts EEG concentration-response relationship of desflurane [see comment] Anesthesiology2001;94:390–399; discussion 395APubMedCrossRefGoogle Scholar
  168. 168.
    Ropcke H, Wirz S, Bouillon T, Bruhn J, Hoeft A Pharmacodynamic interaction of nitrous oxide with sevoflurane, desflurane, isoflurane and enflurane in surgical patients: measurements by effects on EEG median power frequency Eur J Anaesthesiol2001;18:440–449PubMedGoogle Scholar
  169. 169.
    Burrow B, McKenzie B, Case C Do anaesthetized patients recover better after Bispectral Index Monitoring? Anaesth Intensive Care2001;29:239–245PubMedGoogle Scholar
  170. 170.
    Liu SS Effects of Bispectral Index monitoring on ambulatory anesthesia: a meta-analysis of randomized controlled trials and a cost analysis Anesthesiology2004;101:311–315PubMedCrossRefGoogle Scholar
  171. 171.
    Ahmad S, Yilmaz M, Marcus RJ, Glisson S, Kinsella A Impact of bispectral index monitoring on fast tracking of gynecologic patients undergoing laparoscopic surgery [see comment] Anesthesiology2003;98:849–852PubMedCrossRefGoogle Scholar
  172. 172.
    Guignard B, Coste C, Menigaux C, Chauvin M Reduced isoflurane consumption with bispectral index monitoring Acta Anaesthesiol Scand2001;45:308–314PubMedCrossRefGoogle Scholar
  173. 173.
    Spackman TN, Abel MD BIS monitoring: there’s more to it than awareness [comment] Anesthesiology2002;96:255–256PubMedCrossRefGoogle Scholar
  174. 174.
    Anonymous Tailored anesthesia aids safety post-surgery. Healthcare Benchmarks Qual Improve 2005;12:9–11Google Scholar
  175. 175.
    Moller JT, Pedersen T, Rasmussen LS, Jensen PF, Pedersen BD, Ravlo O, Rasmussen NH, Espersen K, Johannessen NW, Cooper JB, et al. Randomized evaluation of pulse oximetry in 20,802 patients: I. Design, demography, pulse oximetry failure rate, and overall complication rate [see comment]Anesthesiology1993;78:436–444PubMedGoogle Scholar
  176. 176.
    Rakvag TT, Klepstad P, Baar C, Kvam T-M, Dale O, Kaasa S, Krokan HE, Skorpen F The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patientsPain2005;116:73–78PubMedCrossRefGoogle Scholar
  177. 177.
    Sindrup SH, Brosen K The pharmacogenetics of codeine hypoalgesiaPharmacogenetics1995;5:335–346PubMedCrossRefGoogle Scholar
  178. 178.
    Wilkinson GR Drug metabolism and variability among patients in drug response [see comment] N Engl J Med2005;352:2211–2221PubMedCrossRefGoogle Scholar
  179. 179.
    Weinshilboum R Inheritance and drug response [see comment]N Engl J Med2003;348:529–537PubMedCrossRefGoogle Scholar
  180. 180.
    Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review JAMA 2001;286:2270–2279PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.AnesthesiologyUniversity of Colorado at Denver and Health Sciences CenterDenverUSA

Personalised recommendations