Journal of Clinical Monitoring and Computing

, Volume 19, Issue 4–5, pp 339–349 | Cite as

Grid-enabling medical image analysis

  • C. Germain
  • V. Breton
  • P. Clarysse
  • Y. Gaudeau
  • T. Glatard
  • E. Jeannot
  • Y Legré
  • C. Loomis
  • I. Magnin
  • J. Montagnat
  • J. -M. Moureaux
  • A. Osorio
  • X. Pennec
  • R. Texier
Article

Abstract

Grids have emerged as a promising technology to handle the data and compute intensive requirements of many application areas. Digital medical image processing is a promising application area for grids. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. The research project AGIR (Grid Analysis of Radiological Data) presented in this paper addresses this challenge through a combined approach: on one hand, leveraging the grid middleware through core grid medical services which target the requirements of medical data processing applications; on the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical applications.

Keywords

Grid computing medical image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agir web site. http://www.aci-agir.org.
  2. 2.
    Altintas I, Berkley C, Jaeger E, Jones M, Ludaescher B, Mock S. Kepler: Towards a grid-enabled system for scientific workflows. In GGF10, March 2004.Google Scholar
  3. 3.
    Berman F, Wolski R, Casanova H et al. Adaptive computing on the grid using AppLeS. IEEE Trans Parallel Distrib Syst 2003; 14(4): 369–382.CrossRefGoogle Scholar
  4. 4.
    Berry D, Germain-Renaud C, Hill D, Pieper S, Saltz J. Report on workshop IMAGE 03: Images, Medical Analysis and Grid Environments. TR UKeS-2004-02, UK National e-Science Centre, http://www.nesc.ac.uk/technical_papers/UKeS-2004-02.pdf, Feb. 2004.
  5. 5.
    Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W. An Architecture for Differenciated Services, 1998; IETF RFC 2475.Google Scholar
  6. 6.
    Chandra A, Adler M, Shenoy P. Deadline fair scheduling: Bridging the theory and practice of proportionate-fair scheduling in multiprocessor servers. In Proc. of the 7th IEEE Real-Time Technology and Applications Symposium 2001.Google Scholar
  7. 7.
    Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Blackburn K, Lazzarini A, Arbree A, Cavanaugh R, Koranda S. Mapping abstract complex workflows onto grid environments. Journal of Grid Computing 2003; 1(1): 9–23.CrossRefGoogle Scholar
  8. 8.
    Duan Z, Zhang Z, Hou YT, Gao L. A core stateless bandwidth broker architecture for scalable support of guaranteed services. IEEE Trans. Parallel and Distributed Systems 2004; 15(2): 167–182.Google Scholar
  9. 9.
    Pruyne J, et al. WS-Agreement specification draft, June 2004. https://forge.gridforum.org/projects/graap-wg/document/draft-ggf-graap-agre
  10. 10.
    Foster I, Fidler M, Roy A, Sander V, Winkler L. End-to-End quality of service for high-end applications. Computer Communications 2004; 27(14): 1375–1388.CrossRefGoogle Scholar
  11. 11.
    Foster I, Kesselman C, Nick JM, Tuecke S. Grid Services for Distributed System Integration. Computer 2002 35(6): 37–46. extended version: The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, GGF June 2002.Google Scholar
  12. 12.
    Foster I, Voeckler J, Wilde M, Zhao Y. Chimera: A Virtual Data System for Representing, Querying and Automating Data Derivation. In 14th Conference on Scientific and Statistical Database Management, Edinburgh, Scotland, July 2002.Google Scholar
  13. 13.
    Furmento N, Mayer A, McGough S, Newhouse S, Field T, Darlington J. ICENI : Optimisation of component applications within a Grid environment. Journal of Parallel Computing 2002; 28(12): 1753–1772.CrossRefGoogle Scholar
  14. 14.
    Germain C, Texier R, Osorio A. Exploration of Medical Images on the Grid. Methods of Information in Medecine, 2005 (to appear).Google Scholar
  15. 15.
    Foster I, Insley J, Laszewski G, Kesselman C, Thiebaux M. Distance visualization: Data exploration on the grid. Computer, 1999; 32(12): 36–43.CrossRefGoogle Scholar
  16. 16.
    Magnin IE, Montagnat J, Breton V. Partitioning medical image databases for content-based queries on a grid. Methods of Information in Medecine, 2005 (to appear).Google Scholar
  17. 17.
    Jeannot E, Knutsson B, Björkman M. Adaptive Online Data Compression. In IEEE High Performance Distributed Computing (HPDC'11), pp. 379–388, Edinburgh, Scotland, July 2002.Google Scholar
  18. 18.
    Mäkelä T, Pham QC, Clarysse P, Nenonen J, Lötjönen J, Sipilä O, Hänninen H, Lauerma K, Knutti J, Katila T, Magnin IE. A 3D model-based registration approach for the PET, MR and MCG cardiac data fusion. Medical Image Analysis 2003; 7(3): 377–389.PubMedGoogle Scholar
  19. 19.
    Nahrstedt K, Hao hua Chu, Narayan S. QoS-aware resource management for distributed multimedia applications. J. High Speed Netw 1999; 7(3–4).Google Scholar
  20. 20.
    Nicolau S, Pennec X, Soler L, Ayache N. Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality. In Ayache N Delingette H, eds., International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM'03), volume 2673 of Lecture Notes in Computer Science, pp. 270–283, Juan-les-Pins, France, 2003. INRIA Sophia Antipolis, Springer-Verlag.Google Scholar
  21. 21.
    Osorio A, Traxer O, Merran S, Dargent F, Ripoche X, Atif J. Real time fusion of 2D fluoroscopic and 3D segmented CT images integrated into an Augmented Reality system for percutaneous nephrolithotomies (PCNL). In InfoRAD 2004, RSNA'04, Nov. 26–Dec. 4, 2004. Award: Cum Laude.Google Scholar
  22. 22.
    Peltier ST, Ellisman MH. The Biomedical Informatics Research Network, chapter 8. Elsevier, 2004.Google Scholar
  23. 23.
    Pham QC, Vincent F, Clarysse P, Croisille P, Magnin IE. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI. In 2nd International Symposium on Image and Signal Processing and Analysis (ISPA 2001), pp. 250–254, Pula, Croatia, 2001.Google Scholar
  24. 24.
    Seitz L, Pierson J-M, Brunie L. Key Management for Encrypted Data Storage in Distributed Systems. In IEEE Security in Storage Workshop, pp. 20–30, Washington DC, USA, October 2003.Google Scholar
  25. 25.
    Servois V, Osorio A, Atif J, et al. A new PC based software for prostatic 3D segmentation and volume measurement. Application to permanent prostate brachytherapy (PPB) evaluation using CT and MR images fusion. InfoRAD 2002 – RSNA'02, 2002.Google Scholar
  26. 26.
    Srinivasan A, Anderson JH. Efficient scheduling of soft real-time applications on multiprocessors. Jal. Embedded Computing 2004; 1(3): 1–14.Google Scholar
  27. 27.
    Tatebe O, Morita Y, Matsuoka S, Soda N, Sekiguchi S. Grid Datafarm Architecture for Petascale Data Intensive Computing. In 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002.Google Scholar
  28. 28.
    Taubman DS, Marcellin MW. JPEG 2000, Image Compression, Fundamentals, Standards and Practice. Kluwer Academic Publishers, 2002.Google Scholar
  29. 29.
    Taylor I, Shields M, Wang I, Philp R. Grid Enabling Applications Using Triana. In Workshop on Grid Applications and Programming Tools – In conjunction with GGF8 jointly organized by : GGF Applications and Testbeds Research Group and GGF User Program Development Tools Research Group, Seattle, USA, June 2003.Google Scholar
  30. 30.
    Voison T, Guillemot L, Moureaux JM. Image compression using lattice vector quantization with code book shape adapted thresholding. In ICIP 2002, IEEE International Conference on Image Processing, Rochester, NY, USA, September 2002.Google Scholar
  31. 31.
    Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998; 7(3): 359–369.PubMedGoogle Scholar
  32. 32.
    Ziv J, Lempel A. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 1978; 24(5): 530–536.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. Germain
    • 1
    • 2
  • V. Breton
    • 2
  • P. Clarysse
    • 3
  • Y. Gaudeau
    • 4
  • T. Glatard
    • 5
  • E. Jeannot
    • 6
  • Y Legré
    • 2
  • C. Loomis
    • 7
  • I. Magnin
    • 3
  • J. Montagnat
    • 5
  • J. -M. Moureaux
    • 4
  • A. Osorio
    • 9
  • X. Pennec
    • 8
  • R. Texier
    • 1
  1. 1.Laboratoire de Recherche en Informatique (LRI) – CNRSUniversité Paris-SudFrance
  2. 2.Laboratoire de Physique Corpusculaire (LPC) – CNRSFrance
  3. 3.CREATIS – CNRS, INSA, INSERMFrance
  4. 4.Centre de Recherche en Automatique de Nancy (CRAN) – CNRS, INPLUniversités de NancyFrance
  5. 5.Laboratoire Informatique Signaux et Syst‘emes (I3S) – CNRSUniversité de NiceFrance
  6. 6.Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) – CNRS, INRIA, INPLUniversités de NancyFrance
  7. 7.Laboratoire de l'Accélérateur Linéaire (LAL) – CNRSUniversité Paris-SudFrance
  8. 8.Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI) – CNRSFrance
  9. 9.INRIA Sophia-AntipolisFrance

Personalised recommendations