Skip to main content
Log in

Coordination of the Hemilabile Ligand Diphenylvinylphosphine to Ru4(µ-H)4(CO)12: Synthesis, Stability and Structural Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The tetraruthenium tetrahydrido carbonyl cluster Ru4(µ-H)4(CO)12 (1) reacts with diphenylvinylphosphine under thermal activation to give the substitution products Ru4(µ-H)4(CO)12−n1-Ph2PCH=CH2)n, (2) (n = 3 (a); 4 (b)). Both 2a and 2b have been completely characterized, including by single-crystal X-ray diffraction analysis. Each of the diphenylvinylphosphine ligands in 2a and 2b is terminally bound, via the phosphorus atom, to a different ruthenium metal center, while the hydride positions in the Ru4(µ-H)4 cores retain the D2d symmetry of the parent cluster 1. Clusters 2a and 2b were able to retain their structural integrity at elevated temperatures.

Graphic Abstract

Thermolysis of Ru4(μ-H)4(CO)12 (1) in cyclohexane with diphenylvinylphosphine afforded the tri- and tetra-substituted derivatives Ru4(μ-H)4(CO)91-Ph2PCH=CH2)3 (2a) and Ru4(μ-H)4(CO)81-Ph2PCH=CH2)4 (2b). For both substituted clusters, the diphenylvinylphosphine ligands are bound terminally to the tetraruthenium core via the phosphorus atoms while the hydride positions retain the D2d symmetry of the parent cluster 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Bader and E. Lindner (1991). Coord. Chem. Rev. 108, 27.

    Article  CAS  Google Scholar 

  2. P. Espinet and K. Soulantica (1999). Coord. Chem. Rev. 193–195, 499.

    Article  Google Scholar 

  3. P. Braunstein and F. Naud (2001). Angew. Chem. Int. Ed. 40, 680.

    Article  CAS  Google Scholar 

  4. V. V. Grushin (2004). Chem. Rev. 104, 1629.

    Article  CAS  PubMed  Google Scholar 

  5. P. Braunstein (2004). J. Organomet. Chem. 689, 3953.

    Article  CAS  Google Scholar 

  6. H. Grützmacher (2008). Angew. Chem. Int. Ed. 47, 1814.

    Article  Google Scholar 

  7. X. R. L. Fontain, D. P. Markham, and B. L. Shaw (1990). J. Organomet. Chem. 391, 123.

    Article  Google Scholar 

  8. G. Hogarth (1991). J. Organomet. Chem. 407, 91.

    Article  CAS  Google Scholar 

  9. D. Peña, Y. Otero, A. Arce, L. Díaz, Y. De Sanctis, E. Ocando-Mavarez, J. M. Garcia, R. Machado, and T. González (2014). J. Organomet. Chem. 772–773, 7.

    Article  Google Scholar 

  10. D. Peña, Y. Otero, A. Arce, J. M. Garcia, D. S. Coll, E. Ocando-Mavarez, R. Machado, and T. González (2016). Inorg. Chim. Acta 439, 178.

    Article  Google Scholar 

  11. E. V. Grachova, M. Haukka, B. T. Heaton, E. Nordlander, T. A. Pakkanen, I. S. Podkorytov, and S. P. Tunik (2003). Dalton Trans. 12, 2468.

    Article  Google Scholar 

  12. R. Gobetto, E. Sappa, A. Tiripicchio, M. T. Camellini, and M. J. Mays (1990). J. Chem. Soc. Dalton Trans., 807.

  13. B. F. G. Johnson, J. Lewis, E. Nordlander, and P. R. Raithby (1996). J. Chem. Soc. Dalton Trans. 19, 3825.

    Article  Google Scholar 

  14. R. Giordano, E. Sappa, G. Predieri, and A. Tiripicchio (1997). J. Organomet. Chem. 547, 49.

    Article  CAS  Google Scholar 

  15. M. Bianchi, G. Menchi, P. Frediani, U. Matteoli, and F. Piacenti (1983). J. Organomet. Chem. 247, 89.

    Article  CAS  Google Scholar 

  16. U. Matteoli, M. Bianchi, P. Frediani, F. Piacenti, C. Botteghi, and M. Marchetti (1984). J. Organomet. Chem. 263, 243.

    Article  CAS  Google Scholar 

  17. C. Botteghi, S. Gladiali, M. Bianchi, U. Matteoli, P. Frediani, P. G. Vergamini, and E. Benedetti (1977). J. Organomet. Chem. 140, 221.

    Article  CAS  Google Scholar 

  18. M. Bianchi, U. Matteoli, G. Menchi, F. Gloria, P. Frediani, F. Piacenti, and C. Botteghi (1980). J. Organomet. Chem. 195, 337.

    Article  CAS  Google Scholar 

  19. U. Matteoli, G. Menchi, P. Frediani, M. Bianchi, and F. Piacenti (1985). J. Organomet. Chem. 28, 281.

    Article  Google Scholar 

  20. U. Matteoli, V. Beghetto, and A. Scrivanti (1996). J. Mol. Catal. A 109, 45.

    Article  CAS  Google Scholar 

  21. R. D. Adams, E. M. Boswell, B. Captain, A. B. Hungria, P. A. Midgley, R. Raja, and J. M. Thomas (2007). Angew. Chem. Int. Ed. 46, 8182.

    Article  CAS  Google Scholar 

  22. L. Howard-Fabretto and G. G. Andersson (2019). Adv. Mater. 32, 1904122.

    Article  Google Scholar 

  23. R. D. Adams, E. M. Boswell, B. Captain, and M. A. Patel (2007). Inorg. Chem. 46, 533.

    Article  CAS  PubMed  Google Scholar 

  24. G. Hogarth, S. E. Kabir, and E. Nordlander (2010). Dalton Trans. 39, 6153.

    Article  CAS  PubMed  Google Scholar 

  25. P. Homanen, R. Persson, M. Haukka, T. A. Pakkanen, and E. Nordlander (2000). Organometallics 19, 5568.

    Article  CAS  Google Scholar 

  26. V. Moberg, P. Homanen, S. Selva, R. Persson, M. Haukka, T. A. Pakkanen, M. Monari, and E. Nordlander (2006). Dalton Trans. 1, 279.

    Article  Google Scholar 

  27. V. Moberg, M. Haukka, I. O. Koshevoy, R. Ortiz, and E. Nordlander (2006). Organometallics 26, 4090.

    Article  Google Scholar 

  28. V. Moberg, R. Duquesne, S. Contaldi, O. Röhrs, J. Nachtigall, L. Damoense, A. T. Hutton, M. Green, M. Monari, D. Santelia, M. Haukka, and E. Nordlander (2012). Chem. Eur. J. 18, 12458.

    Article  CAS  PubMed  Google Scholar 

  29. M. G. Ballinas-López, E. V. García-Báez, and M. J. Rosales-Hoz (2003). Polyhedron 22, 3403.

    Article  Google Scholar 

  30. R. K. Pomeroy (1995). in: G. Wilkinson, F. G. A. Stone, E. W. Abel (eds.), Comprehensive Organometallic Chemistry II (Pergamon, Oxford, New York, 1995), vol. 7, ch. 15.

  31. M. R. Churchill and B. G. DeBoer (1977). Inorg. Chem. 16, 878.

    Article  CAS  Google Scholar 

  32. B. F. G. Johnson, J. Lewis, P. R. Raithby, G. M. Sheldrick, K. Wong, and M. McPartlin (1978). J. Chem. Soc. Dalton Trans., 673.

  33. M. B. Smith and J. March, March’s Advanced Organic Chemistry, 5th ed. (Wiley, New York, 2001), p. 20.

    Google Scholar 

  34. S. Aime, M. Botta, R. Gobetto, L. Milone, D. Osella, R. Gellert, and E. Rosenberg (1995). Organometallics 14, 3693.

    Article  CAS  Google Scholar 

  35. S. A. R. Knox and H. D. Kaesz (1971). J. Am. Chem. Soc. 93, 4594.

    Article  Google Scholar 

  36. S. Aime, M. Botta, R. Gobetto, and D. Osella (1986). Inorg. Chim. Acta 115, 129.

    Article  CAS  Google Scholar 

  37. A. G. Orpen and R. K. McMullan (1983). J. Chem. Soc. Dalton Trans., 463.

  38. M. G. Ballinas-López, M. J. Rosales-Hoz, and E. V. García-Báez (2003). Inorg. Chem. Commun. 6, 675.

    Article  Google Scholar 

  39. M. Bianchi, P. Frediani, A. Salvani, L. Rosi, L. Pistolesi, F. Piacenti, S. Ianelli, and M. Nardelli (1997). Organometallics 16, 482.

    Article  CAS  Google Scholar 

  40. M. I. Bruce, B. K. Nicholson, J. M. Patrick, and A. H. White (1983). J. Organomet. Chem. 254, 361.

    Article  CAS  Google Scholar 

  41. S. A. R. Knox, J. W. Koepke, M. A. Andrews, and H. D. Kaesz (1975). J. Am. Chem. Soc. 97, 3942.

    Article  CAS  Google Scholar 

  42. SMART, version 5.628; Bruker AXS, Inc., Madison, WI, USA, 2001.

  43. SAINT+, version 6.22a; Bruker AXS, Inc., Madison, WI, USA, 2001.

  44. G. M. Sheldrick (1996). SADABS.

  45. G. M. Sheldrick (2015). Acta Cryst. C 71, 3.

    Article  Google Scholar 

  46. A. G. Orpen (1980). J. Chem. Soc. Dalton Trans., 2509.

Download references

Acknowledgments

This work was supported by Hwa Chong Institution as well as Nanyang Technological University and the Ministry of Education with a research Grant (No. M4011158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weng Kee Leong or Yong Leng Kelvin Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2021_2150_MOESM1_ESM.pdf

Supplementary file1 (PDF 518 kb) Supplementary Material: CCDC 1517034‒1517035 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. IR, NMR and ESI–MS spectra for 2a and 2b.

Supplementary file 2 (CIF 784 kb)

Supplementary file 3 (CIF 745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neo, R.K.E., Ong, H.W., Wong, Z.X. et al. Coordination of the Hemilabile Ligand Diphenylvinylphosphine to Ru4(µ-H)4(CO)12: Synthesis, Stability and Structural Studies. J Clust Sci 33, 2337–2343 (2022). https://doi.org/10.1007/s10876-021-02150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02150-0

Keywords

Navigation