Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution

  • 17 Accesses

Abstract

In this work, the electronic excited states of hypoxanthine in solution such as water and acetonitrile are investigated by the time-dependent density functional theory (TDDFT) method. We demonstrated for the first time that the intermolecular excited-state electron transfer (ESET) from solvents to the hypoxanthine through excited-state intermolecular hydrogen-bonds cluster exhibits obvious site-selectivity. Excited-state electron transfer could only occur at the N7 site of hypoxanthine molecule in water solution, while that is the N9 site in acetonitrile. Potential energy surfaces for different electronic states of hypoxanthine with and without the influence of the excited-state hydrogen bonding cluster are also discussed. Site-selective ESET is proposed to induce the internal conversion of hypoxanthine from S2 state to S1 at a conical intersection, which is responsible for the ultrashort lifetime of hypoxanthine in excited state in solution. These results pave a novel way to understand the photophysical and photochemical behaviors of DNA bases and their derivatives in solution phase.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Yoshihara (1999). Adv. Chem. Phys.107, 371–402.

  2. 2.

    T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz, and K. Yoshihara (1991). Chem. Phys. Lett.180, 416–422.

  3. 3.

    Y. Nagasawa, A. P. Yartsev, K. Tominaga, A. E. Johnson, and K. Yoshihara (1993). J. Am. Chem. Soc.115, 7922–7923.

  4. 4.

    M. D. Ward (1997). Chem. Soc. Rev.26, 365–375.

  5. 5.

    P. Piotrowiak (1999). Chem. Soc. Rev.28, 143–150.

  6. 6.

    M. C. Jimenez, M. A. Miranda, and R. Tormos (2005). Chem. Soc. Rev.34, 783–796.

  7. 7.

    A. C. Benniston and A. Harriman (2006). Chem. Soc. Rev.35, 169–179.

  8. 8.

    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B111, 8940–8945.

  9. 9.

    H. B. Yang, N. Das, F. Huang, A. M. Hawkridge, D. D. Díaz, A. M. Arif, M. G. Finn, D. C. Muddiman, and P. J. Stang (2006). J. Am. Chem. Soc.128, 10014–10015.

  10. 10.

    W. Domcke and A. L. Sobolewski (2003). Science302, 1693–1694.

  11. 11.

    M. Ramegowda (2013). New J. Chem.37, 2648–2653.

  12. 12.

    Z. X. Huang, D. M. Ji, A. D. Xia, F. Koberling, M. Patting, and R. Erdmann (2005). J. Am. Chem. Soc.127, 8064–8066.

  13. 13.

    W. Lv, N. Li, Y. L. Li, Y. Li, and A. D. Xia (2006). J. Am. Chem. Soc.128, 10281–10287.

  14. 14.

    D. Aumiler, S. F. Wang, X. D. Chen, and A. D. Xia (2009). Am. Chem. Soc.131, 5742.

  15. 15.

    C. R. Waidmann, X. Zhou, E. A. Tsai, W. Kaminsky, D. A. Hrovat, W. T. Borden, and J. M. Mayer (2009). Am. Chem. Soc.131, 4729–4743.

  16. 16.

    P. Jaramillo, K. Coutinho, and S. Canuto (2009). J. Phys. Chem. A113, 12485–12495.

  17. 17.

    S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati, and A. Mozzarelli (2005). J. Am. Chem. Soc.127, 626–635.

  18. 18.

    G. J. Zhao and K. L. Han (2008). Biophys. J.94, 38–46.

  19. 19.

    L. Zhao, P. W. Zhou, and G. J. Zhao (2016). RSC Adv.6, 64323–64331.

  20. 20.

    C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, and B. Kohler (2004). Chem. Rev.104, 1977–2019.

  21. 21.

    C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez, and B. Kohler (2009). Annu. Rev. Phys. Chem.60, 217–239.

  22. 22.

    A. L. D. Sobolewski (2006). Europhys. News37, 20–23.

  23. 23.

    L. Zhao, P. Zhou, and G. Zhao (2016). J. Chem. Phys.145, 044316.

  24. 24.

    C. Wang, Y. Liu, X. Feng, C. Y. Zhou, Y. L. Liu, and X. Yu (2019). Angew. Chem. Int. Ed.58, (34), 11642–11646.

  25. 25.

    M. L. Shukla and J. Leszczynski Radiation Induced Molecular Phenomena in Nucleic Acids (Springer, Berlin, 2008).

  26. 26.

    A. Abo-Riziq, L. Grace, E. Nir, M. Kabelac, P. Hobza, and M. S. de Vries (2005). Natl. Acad. Sci. USA102, 20–23.

  27. 27.

    S. Yamazaki, A. L. Sobolewski, and W. Domcke (2009). Phys. Chem. Chem. Phys.11, 10165–10174.

  28. 28.

    C. E. Crespo-Hernandez and B. Kohler (2004). J. Phys. Chem. B108, 11182–11188.

  29. 29.

    W. Domcke, D. Yarkony, and H. Köppel Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, vol. 15 (World Scientific, Singapore, 2004), pp. 41–102.

  30. 30.

    S. Perun, A. L. Sobolewski, and W. Domcke (2006). J. Phys. Chem. A110, 9031–9038.

  31. 31.

    H. L. Barks, R. Buckley, G. A. Grieves, E. Di Mauro, N. V. Hud, and T. M. Orlando (2010). ChemBioChem11, 1240–1243.

  32. 32.

    M. P. Callahan, K. E. Smith, H. J. Cleaves, J. Ruzicka, J. C. Stern, D. P. Glavin, C. H. House, and J. P. Dworkin (2011). Proc. Natl. Acad. Sci. USA108, 13995–13998.

  33. 33.

    G. Wachtershauser (1988). Proc. Natl. Acad. Sci. USA85, 1134–1135.

  34. 34.

    R. J. Malone, A. M. Miller, and B. Kohler (2003). Photochem. Photobiol.77, 158–164.

  35. 35.

    B. Cohen, P. M. Hare, and B. Kohler (2003). J. Am. Chem. Soc.125, 13594–13601.

  36. 36.

    E. Mburu and S. Matsika (2008). J. Phys. Chem. A112, 12485–12491.

  37. 37.

    M. P. Callahan, B. Crews, A. Abo-Riziq, L. Grace, M. S. de Vries, Z. Gengeliczki, T. M. Holmes, and G. A. Hill (2007). Phys. Chem. Chem. Phys.9, 4587–4591.

  38. 38.

    M. Mons, F. Piuzzi, I. Dimicoli, L. Gorb, and J. Leszczynski (2006). J. Phys. Chem. A110, 10921–10924.

  39. 39.

    K. Rottger, R. Siewertsen, and F. Temps (2012). Chem. Phys. Lett.536, 140–146.

  40. 40.

    J. P. Villabona-Monsalve, R. Noria, S. Matsika, and J. Peon (2012). J. Am. Chem. Soc.134, 7820–7829.

  41. 41.

    J. W. Jones and R. K. Robins (1963). J. Am. Chem. Soc.85, 193–201.

  42. 42.

    Y. Nishimura, S. Takahashi, T. Yamamoto, M. Tsuboi, M. Hattori, K. Miura, K. Yamaguchi, S. Ohtani, and T. Hata (1980). Nucleic Acids Res.8, 1107–1119.

  43. 43.

    E. Kulikowska, A. Bzowska, J. Wierzchowski, and D. Shugar (1986). Biochim. Biophys. Acta874, 355–363.

  44. 44.

    V. Lemaur, M. Steel, D. Beljonne, J. L. Bredas, and J. Cornil (2005). J. Am. Chem. Soc.127, 6077–6086.

  45. 45.

    A. D. Becke (1993). J. Chem. Phys.98, 5648–5652.

  46. 46.

    A. D. Becke (1988). Phys. Rev. A38, 3098–3100.

  47. 47.

    C. T. Lee, W. T. Yang, and R. G. Parr (1988). Phys. Rev. B37, 785–789.

  48. 48.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). J. Phys. Chem.98, 11623–11627.

  49. 49.

    A. V. Marenich, C. J. Cramer, and D. G. Truhlar (2009). J. Phys. Chem. B113, 6378–6396.

  50. 50.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides (Gaussian Inc, Wallingford, 2010).

  51. 51.

    J. F. Gerster, R. K. Robins, and J. W. Jones (1963). J. Org. Chem.28, 945.

  52. 52.

    M. Leng, F. Pochon, and A. Michelso (1968). Biochim. Biophys. Acta169, 338–349.

  53. 53.

    L. C. Zhou, G. J. Zhao, J. F. Liu, K. L. Han, Y. K. Wu, X. J. Peng, and M. T. Sun (2007). J. Photochem. Photobiol. A187, 305–310.

  54. 54.

    D. Sicinska, D. G. Truhlar, and P. Paneth (2005). J. Am. Chem. Soc.127, 5414–5422.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21573229, 21873068 and 21422309). G.J.Z. also thanks the financial support from the Frontier Science Project of the Knowledge Innovation Program of Chinese Academy of Sciences (CAS), Project for Excellent Member of CAS Youth Innovation Promotion Association, the Open Research Funds of State Key Laboratory of Bioelectronics (Southeast University) and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences), and Double First-Rate Project of Tianjin University.

Author information

Correspondence to Guangjiu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Guo, Y., Feng, X. et al. Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01765-z

Download citation

Keywords

  • Hydrogen bond
  • Excited states
  • Charge transfer
  • Conical intersection
  • Internal conversion