Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

P. domestica Extract Mediated Silver Nanoparticles and their Antinociceptive Activity for Pain Management in Children

  • 7 Accesses

Abstract

Because of the environmentally-friendly design and low cost, bio-mediated synthesis of nanoparticles has become popular in recent years. In this research, we utilized an aqueous extract of Prunus domestica (P. domestica) to produce silver nanoparticles (AgNPs). Different spectroscopic and microscopic studies have performed to characterize the as-produced AgNPs. The X-ray diffraction (XRD) findings showed the formation of crystalline face-centered cubic (fcc) NPs. Furthermore, the analysis of Fourier transform infrared (FT-IR) spectroscopy verified that the P. domestica leaf extract not only worked as a bioreducing agent and also capped the AgNP surface by serving as a stabilizing agent. The prepared AgNPs were tested for their antinociceptive (abdominal constriction response) activities. It was revealed that AgNPs suggestively reduced the chemically-persuaded nociception, which was equivalent to the effect of P. domestica extract. Further, these results conclude the use of P. domestica extract mediated AgNPs as antinociceptive agent for pain management in children.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Moldovan, L. David, M. Achim, S. Clichici, and G. A. Filip (2016). J. Mol. Liquids.221, 271–278.

  2. 2.

    R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S. P. Anthony, A. Sivasubramanian, and M. S. Muthuraman (2016). J. Mol. Liquids.220, 926–930.

  3. 3.

    P. Orlowski, M. Zmigrodzka, E. Tomaszewska, K. Ranoszek-Soliwoda, M. Czupryn, M. Antos-Bielska, J. Szemraj, G. Celichowski, J. Grobelny, and M. Krzyzowska (2018). Int. J. Nanomed.13, 991.

  4. 4.

    K. Ranoszek-Soliwoda, E. Tomaszewska, K. Małek, G. Celichowski, P. Orlowski, M. Krzyzowska, and J. Grobelny (2019). Coll. Surf. B Biointerf.117, 19–24.

  5. 5.

    M. J. Ahmed, G. Murtaza, A. Mehmood, and T. M. Bhatti (2015). Mater. Lett.153, 10–13.

  6. 6.

    N. Ahmad, S. Bhatnagar, S. S. Ali, and R. Dutta (2015). Int. J. Nanomed.10, 7019.

  7. 7.

    N. Shobha, N. Nanda, A. S. Giresha, P. Manjappa, K. Dharmappa, and B. Nagabhushana (2018). Mater. Sci. Eng. C.97, 842–850.

  8. 8.

    H. Collier, L. Dinneen, C. A. Johnson, and C. Schneider (1968). Br J Pharmacol Chemother.32, (2), 295–310.

  9. 9.

    P. Velusamy, J. Das, R. Pachaiappan, B. Vaseeharan, and K. Pandian (2015). Ind. Crops Prod.66, 103–109.

  10. 10.

    N. L. Gavade, A. N. Kadam, M. B. Suwarnkar, V. P. Ghodake, and K. M. Garadkar (2015). Spectrochim. Acta, Part A136, 953–960.

  11. 11.

    K. Rajaram, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett.138, 251–254.

  12. 12.

    M. Nasrollahzadeh, S. M. Sajadi, and Y. Mirzaei (2016). J. Colloid Interface Sci.468, 156–162.

  13. 13.

    V. K. Vidhu and D. Philip (2014). Spectrochim. Acta, Part A117, 102–108.

  14. 14.

    S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci.275, 496–502.

  15. 15.

    G. Rajakumar and A. Abdul Rahuman (2012). Res. Vet. Sci.93, 303–309.

  16. 16.

    H. Merskey, and N. Bogduk. 2nd ed. pp 210–3, (IASP Press, Seattle, 1994).

  17. 17.

    M. J. Millan (1999). Prog. Neurobiol.57, 1–164.

  18. 18.

    S. P. Gawade (2012). J Pharmacol Pharmacother.3, 348.

  19. 19.

    G. Bentley, S. Newton, and J. Starr (1981). Br J Pharmacol.73, 325–332.

  20. 20.

    G. Bentley, S. Newton, and J. Starr (1983). Br J Pharmacol.79, 125–134.

  21. 21.

    Gray, P. Spencer, and R. D. E. Sewell (1998). Br. J. Pharmacol.124, 669–674.

  22. 22.

    A. M. Gray, D. M. Pache, and R. D. Sewell (1999). Eur. J. Pharmacol.378, 161–168.

  23. 23.

    M. Sprintz, C. Benedetti, and M. Ferrari (2004). Minerva Anestesiol.71, (7–8), 419–423.

  24. 24.

    S. B. Maddinedi, J. Sonamuthu, S. S. Yildiz, G. Han, Y. Cai, J. Gao, Q. Ni, and J. Yao (2018). J Photochem. Photobiol. B186, 189–196.

  25. 25.

    S. B. Maddinedi (2017). Environ. Toxicol. Pharm.53, 29–33.

  26. 26.

    S. B. Maddinedi, B. K. Mandal, and K. Kumar (2017). Environ. Toxicol. Pharm.51, 23–29.

  27. 27.

    S. B. Maddinedi, B. K. Mandal, and S. K. Maddili (2017). J Photochem. Photobiol. B167, 236–241.

  28. 28.

    S. B. Maddinedi, B. K. Mandal, and K. Kumar (2017). Environ. Toxicol. Pharm.49, 131–136.

  29. 29.

    N. U. Islam, I. Khan, A. Rauf, N. Muhammad, M. Shahid, and M. R. Shah (2015). BMC Complement. Altern. Med.15, 160.

  30. 30.

    N. U. Islam, K. Jalil, M. Shahid, A. Rauf, N. Muhammad, A. Khan, M. R. Shah, and M. A. Khan (2019). Arab. J. Chem. 12, 1–12.

  31. 31.

    N. U. Islam, K. Jalil, M. Shahid, N. Muhammad, and A. Rauf (2019). Arab. J. Chem. 12, 1–10.

  32. 32.

    M. Sprintz, E. Tasciotti, M. Allegri, A. Grattoni, L. C. Driver, and M. Ferrari (2011). Eur. J. Pain Suppl.5, (S2), 317–322.

Download references

Author information

Correspondence to Zhongde Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, Z. & Yan, H. P. domestica Extract Mediated Silver Nanoparticles and their Antinociceptive Activity for Pain Management in Children. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01764-0

Download citation

Keywords

  • AgNPs
  • Pain management
  • P. domestica