Advertisement

Synthesis, Structure and Photoluminescence Analysis of a Ho3+- cluster-based 3D coordination polymer: {Ho2(H2O)2(DMF)2(ATPA)3}n

  • Adem DönmezEmail author
Original Paper
  • 8 Downloads

Abstract

A new Ho(III) cluster-based 3D coordination polymer with the formula {Ho2(H2O)2(DMF)2(ATPA)3}n (H2ATPA = 2-Aminoterephthalic acid, DMF = N,N-dimethylformamide), 1, has been successfully synthesized via the hydrothermal method and characterized by elemental analysis, FT-IR, UV, single crystal and powder X-ray diffraction and photoluminescence measurements. Each Holmium atom has a distorted bicapped trigonal prismatic geometry with coordination of eight oxygen atoms. The shifting of the absorption band in the UV–Visible spectrum of 1 indicates the Ho atoms involved in coordination with H2ATPA ligand. Ho(III)-based characteristic narrow strong emission bands due to the f–f transitions of Ho(III) cation have been detected for 1 in the visible region. The emission bands observed at 442 nm and 464 nm are the most severe, so the investigated complex emits the bright-blue light. One can conclude that the energy transfers from the H2ATPA ligand to Ho(III) have been done effectively so that 1 would have the potential applications in the optical amplification field.

Keywords

Ho(III) X-ray structure Luminescence 2-Aminoterephthalic acid 

Notes

Acknowledgment

This paper has been granted by the Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant Number: (17/295). The author is grateful to the Dokuz Eylul University for the use of the Agilent Xcalibur Eos diffractometer and acknowledges Balıkesir University, Science and Technology Application and Research Center (BUBTAM), for the use photoluminescence measurements. The author is very thankful to Dr. Hülya Kara SUBAŞAT, Dr. Uğur ERKARSLAN, Dr. M. Burak ÇOBAN and Dr. Çiğdem Elif DEMİRCİ DÖNMEZ for their helpful and constructive suggestions.

Supplementary material

10876_2020_1760_MOESM1_ESM.pdf (354 kb)
Supplementary material 1 (PDF 353 kb)
10876_2020_1760_MOESM2_ESM.txt (20 kb)
Supplementary material 2 (TXT 19 kb)

References

  1. 1.
    N. L. Torad, Y. Li, S. Ishihara, K. Ariga, Y. Kamachi, H. Y. Lian, H. Hamoudi, Y. Sakka, W. Chaikittisilp, K. C. W. Wu, and Y. Yamauchi (2014). Chem. Lett.43, 717.CrossRefGoogle Scholar
  2. 2.
    W. Zhang, X. Jiang, X. Wang, Y. V. Kaneti, Y. Chen, J. Liu, J. Sen Jiang, Y. Yamauchi, and M. Hu (2017). Angew Chemie Int. Ed.56, 8435.CrossRefGoogle Scholar
  3. 3.
    C. Young, R. R. Salunkhe, J. Tang, C. C. Hu, M. Shahabuddin, E. Yanmaz, M. S. A. Hossain, J. H. Kim, and Y. Yamauchi (2016). Phys. Chem. Chem. Phys.18, 29308.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    A. Azhar, Y. Li, Z. Cai, M. B. Zakaria, M. K. Masud, M. S. A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, and M. Hu (2019). Bull. Chem. Soc. Jpn.92, 875.CrossRefGoogle Scholar
  5. 5.
    G. E. Gomez, E. V. Brusau, J. Sacanell, G. J. A. A. Soler Illia, and G. E. Narda (2018). Eur. J. Inorg. Chem.2018, 2452.CrossRefGoogle Scholar
  6. 6.
    S. Wu, Y. Lin, J. Liu, W. Shi, G. Yang, and P. Cheng (2018). Adv. Funct. Mater.28, 1.Google Scholar
  7. 7.
    J. X. Ma, J. Guo, H. Wang, B. Li, T. Yang, and B. Chen (2017). Inorg. Chem.56, 7145.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    W. Xu, Y. Lou, W. Chen, and Y. Kang (2019). Biomed. Eng./Biomed. Tech.1, 1.Google Scholar
  9. 9.
    M. A. Chowdhury (2017). ChemBioEng Rev.4, 225.CrossRefGoogle Scholar
  10. 10.
    U. Erkarslan, A. Donmez, H. Kara, M. Aygun, and M. B. Coban (2018). J. Clust. Sci.29, 1177.CrossRefGoogle Scholar
  11. 11.
    M. B. Coban, U. Erkarslan, G. Oylumluoglu, M. Aygun, and H. Kara (2016). Inorganica Chim. Acta447, 87.CrossRefGoogle Scholar
  12. 12.
    A. Dönmez (2018). Mugla J. Sci. Technol.4, 116.CrossRefGoogle Scholar
  13. 13.
    M. B. Coban, A. Amjad, M. Aygun, and H. Kara (2017). Inorganica Chim. Acta455, 25.CrossRefGoogle Scholar
  14. 14.
    G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct.1146, 356.CrossRefGoogle Scholar
  15. 15.
    Y. Cui, J. Zhang, B. Chen, and G. Qian (2016). Handb. Phys. Chem. Rare Earths50, 243.CrossRefGoogle Scholar
  16. 16.
    J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias (2011). Chem. Soc. Rev.40, 926.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, and G. Qian (2014). J. Am. Chem. Soc.136, 5527.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    S. E. Miller, M. H. Teplensky, P. Z. Moghadam, and D. Fairen-Jimenez (2016). Interface Focus6, 1.CrossRefGoogle Scholar
  19. 19.
    S. Ma, D. Yuan, X. Sen Wang, and H. C. Zhou (2009). Inorg. Chem.48, 2072.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    H. N. Abdelhamid, M. Wilk-Kozubek, A. M. El-Zohry, A. Bermejo Gómez, A. Valiente, B. Martín-Matute, A. V. Mudring, and X. Zou (2019). Microporous Mesoporous Mater.279, 400.CrossRefGoogle Scholar
  21. 21.
    P. Y. Du, W. Gu, and X. Liu (2016). New J. Chem.40, 9017.CrossRefGoogle Scholar
  22. 22.
    M. Kariem, M. Yawer, S. Sharma, and H. N. Sheikh (2016). ChemistrySelect1, 4489.CrossRefGoogle Scholar
  23. 23.
    J. H. Liao, C. S. Tsai, and T. K. Lin (2010). Inorg. Chem. Commun.13, 286.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick (2008). Acta Crystallogr. Sect. A Found. Crystallogr.64, 112.CrossRefGoogle Scholar
  25. 25.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem.71, 3–8.CrossRefGoogle Scholar
  26. 26.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr.42, 339.CrossRefGoogle Scholar
  27. 27.
    A. Dikhtiarenko, P. Serra-Crespo, S. Castellanos, A. Pustovarenko, R. Mendoza-Merono, S. García-Granda, and J. Gascon (2016). Cryst. Growth Des.16, 5636.CrossRefGoogle Scholar
  28. 28.
    A. L. Spek (2009). Acta Crystallogr. D. Biol. Crystallogr.65, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    E. Gungor and H. Kara (2011). Spectrochim Acta Part A Mol. Biomol. Spectrosc.82, 217.CrossRefGoogle Scholar
  30. 30.
    E. Gungor, H. Kara, E. Colacio, and A. J. Mota (2014). Eur. J. Inorg. Chem.2014, 1552.CrossRefGoogle Scholar
  31. 31.
    E. Gungor, Y. Yahsi, H. Kara, and A. Caneschi (2015). Cryst. Eng. Commun.17, 3082.CrossRefGoogle Scholar
  32. 32.
    H. Kara, A. Karaoglu, Y. Yahsi, E. Gungor, A. Caneschi, and L. Sorace (2012). Cryst. Eng. Commun.14, 7320.CrossRefGoogle Scholar
  33. 33.
    M. Almáši, V. Zeleňák, L. Galdun, and J. Kuchár (2014). Inorg. Chem. Commun.39, 39.CrossRefGoogle Scholar
  34. 34.
    D. A. Kara, A. Donmez, H. Kara, and M. Burak Coban (2018). Acta Crystallogr. Sect. C Struct. Chem.74, 901.CrossRefGoogle Scholar
  35. 35.
    C. Kocak, G. Oylumluoglu, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun, and H. Kara (2017). Acta Crystallogr. Sect. C Struct. Chem.73, 414.CrossRefGoogle Scholar
  36. 36.
    P. Chakraborty, I. Majumder, K. S. Banu, B. Ghosh, H. Kara, E. Zangrando, and D. Das (2016). Dalt. Trans.45, 742.CrossRefGoogle Scholar
  37. 37.
    C. F. De Almeida, R. C. De Andrade, L. W. Aguiar, F. J. Caires, E. A. Falcão, and C. T. De Carvalho (2014). J. Therm. Anal. Calorim.117, 251.CrossRefGoogle Scholar
  38. 38.
    X. Li, Z. Xie, J. Lin, and R. Cao (2009). J. Solid State Chem.182, 2290.CrossRefGoogle Scholar
  39. 39.
    X. Li, Y. Lu, Y. Bing, and M. Q. Zha (2012). Synth. React. Inorganic Met. Nano-Metal Chem.42, 698.CrossRefGoogle Scholar
  40. 40.
    A. Donmez, G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct.1149, 569.CrossRefGoogle Scholar
  41. 41.
    A. Donmez, M. B. Coban, C. Kocak, G. Oylumluoglu, U. Baisch, and H. Kara (2017). Mol. Cryst. Liq. Cryst.652, 213.CrossRefGoogle Scholar
  42. 42.
    A. Donmez, M. B. Coban, and H. Kara (2018). J. Clust. Sci.29, 951.CrossRefGoogle Scholar
  43. 43.
    E. Otgonbaatar, M.-C. Chung, K. Umakoshi, and C.-H. Kwak (2015). J. Nanosci. Nanotechnol.15, 1389.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    S. Yoopensuk, P. Tongying, K. Hansongnern, C. Pakawatchai, S. Saithong, Y. Tantirungrotechai, and N. Leesakul (2012). Spectrochim. Acta Part A Mol. Biomol. Spectrosc.86, 538.CrossRefGoogle Scholar
  45. 45.
    U. Erkarslan, G. Oylumluoglu, M. B. Coban, E. Öztürk, and H. Kara (2016). Inorganica Chim. Acta445, 57.CrossRefGoogle Scholar
  46. 46.
    S. Alghool, M. S. Zoromba, and H. F. A. El-Halim (2013). J. Rare Earths31, 715.CrossRefGoogle Scholar
  47. 47.
    Y. Yahsi, H. Ozbek, M. Aygun, and H. Kara (2016). Acta Crystallogr. Sect. C Struct. Chem.72, 426.CrossRefGoogle Scholar
  48. 48.
    S. Chooset, A. Kantacha, K. Chainok, and S. Wongnawa (2018). Inorganica Chim. Acta471, 493.CrossRefGoogle Scholar
  49. 49.
    B. C. F. Farinelli, M. S. Silva, E. R. Botero, C. T. Carvalho, A. R. L. Caires, R. Guo, A. S. Bhalla, and E. A. Falcão (2016). Integr. Ferroelectr.174, 167.CrossRefGoogle Scholar
  50. 50.
    S. Dang, J. Yu, X. Wang, L. Sun, R. Deng, J. Feng, W. Fan, and H. Zhang (2011). J. Lumin.131, 1857.CrossRefGoogle Scholar
  51. 51.
    M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev.38, 1330.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Y. Cui, B. Chen, and G. Qian (2014). Coord. Chem. Rev.273–274, 76.CrossRefGoogle Scholar
  53. 53.
    S. Dang, L. N. Sun, H. J. Zhang, X. M. Guo, Z. F. Li, J. Feng, H. D. Guo, and Z. Y. Guo (2008). J. Phys. Chem. C112, 13240.CrossRefGoogle Scholar
  54. 54.
    N. Sabbatini, A. Mecati, M. Guardigli, V. Balzani, J. M. Lehn, R. Zeissel, and R. Ungaro (1991). J. Lumin.48–49, 463.CrossRefGoogle Scholar
  55. 55.
    D. L. Dexter (1953). J. Chem. Phys.21, 836.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science, Molecular Nano-Materials LaboratoryMugla Sıtkı Koçman UniversityMuglaTurkey
  2. 2.Scientific Research Projects Coordination UnitMugla Sitki Kocman UniversityMuglaTurkey

Personalised recommendations