Comparative Studies on Functionalization of Bacterial Magnetic Nanoparticles for Drug Delivery

  • Varalakshmi Raguraman
  • K. SuthindhiranEmail author
Original Paper


The study demonstrates the use of bacterial magnetic nanoparticles (BMNPs) as a drug carrier for the anticancer drug. BMNPs extracted from Magnetospirillum gryphiswaldense MSR-1, characterized using microscopic and spectroscopic methods. Drug conjugates were developed by direct binding of crizotinib with lipid membrane of BMNPs (CM) and also by using crosslinkers such as glutaraldehyde (CMG) and 3-aminopropyltriethoxysilane (APTES) (CMA). The developed conjugates were characterized using microscopic and spectroscopic methods. Drug loading capacity was 670 µg/ml for CM and 162.08 µg/ml and 243.15 µg/ml for CMG and CMA respectively. The drug loading efficiency of drug conjugates CM, CMG and CMA were found to be 67%, 16.2% and 24.3%. The drug release assay revealed slow and stable discharge of crizotinib from CM conjugate (8.2%) compared to CMG (88.33%) and CMA (58.46%) at 48 h. The cytotoxicity of CM was found to be high in comparison with BMNPs, CMG, CMA and crizotinib as tested on cell lines: A549, MCF-7 and HeLa. Our study establishes that the direct attachment of crizotinib with BMNPs shows better coupling with higher loading efficiency and long-term release compared to use of linkers. Further studies are needed to validate the results using animal models and also for targeted drug delivery.


BMNPs Crizotinib BMNPs-drug conjugates Drug delivery Glutaraldehyde APTES 



Bacterial magnetic nanoparticles


Magnetotactic bacteria


Deutsche Sammlung von Mikroorganismen und Zellkulturen


Magnetospirillum growth medium


Fourier-transform infrared spectroscopy


High-resolution transmission electron microscopy


X-ray diffraction


Thermogravimetric analysis


Atomic force microscopy


Crizotinib-magnetosome complex


Crizotinib-magnetosome complex prepared via glutaraldehyde


Crizotinib-magnetosome complex prepared via APTES



This work was supported by VIT University. The authors thank the management for providing the facilities for the research.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    M. H. Mashhadizadeh and M. Amoli-Diva (2012). J. Nanomed. Nanotechol.3, (4), 139.CrossRefGoogle Scholar
  2. 2.
    Jian-Bo Sun, Jin-Hong Duan, Shun-Ling Dai, Jun Ren, Lin Guo, Wei Jiang, and Ying Li (2008). Biotechnol. Bioeng.101, (6), 1313–1320.PubMedCrossRefGoogle Scholar
  3. 3.
    E. Alphandery, S. Faure, O. Seksek, F. Guyot, and I. Chebbi (2011). ACS Nano.5, (8), 6279–6296.PubMedCrossRefGoogle Scholar
  4. 4.
    S. A. Wahajuddin (2012). Int. J. Nanomed.7, 3445.CrossRefGoogle Scholar
  5. 5.
    T. Revathy, M. A. Jayasri, and K. Suthindhiran (2017). 3 Biotech7, (2), 126.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    J. B. Sun, J. H. Duan, S. L. Dai, J. Ren, Y. D. Zhang, J. S. Tian, and Y. Li (2007). Cancer Lett.258, (1), 109–117.PubMedCrossRefGoogle Scholar
  7. 7.
    B. M. Moskowitz, R. B. Frankel, P. J. Flanders, R. P. Blakemore, and B. B. Schwartz (1988). J. Magn. Magn. Mater.73, (3), 273–288.CrossRefGoogle Scholar
  8. 8.
    D. A. Bazylinski, A. J. Garratt-Reed, and R. B. Frankel (1994). Microsc. Res. Tech.27, (5), 389–401.PubMedCrossRefGoogle Scholar
  9. 9.
    D. A. Bazylinski and R. B. Frankel (2004). Nat. Rev. Microbiol.2, (3), 217–230.PubMedCrossRefGoogle Scholar
  10. 10.
    Y. A. Gorby, T. J. Beveridge, and R. P. Blakemore (1988). J. Bacteriol.170, 834–841.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    N. Nakamura, K. Hashimoto, and T. Matsunaga (1991). Anal. Chem.63, (3), 268–272.PubMedCrossRefGoogle Scholar
  12. 12.
    K. Grünberg, et al. (2004). Appl. Environ. Microbiol.70, (2), 1040–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    T. Matsunaga, F. Ueki, K. Obata, H. Tajima, T. Tanaka, H. Takeyama, Y. Goda, and S. Fujimoto (2003). Anal. Chim. Acta475, 75–83.CrossRefGoogle Scholar
  14. 14.
    L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin, and H. Li (2012). Microbiol. Res.167, (9), 507–519.PubMedCrossRefGoogle Scholar
  15. 15.
    H. Takeyama, A. Yamazawa, C. Nakamura, and T. Matsunaga (1995). Biotechnol. Tech.9, (5), 355–360.CrossRefGoogle Scholar
  16. 16.
    B. Yoza, M. Matsumoto, and T. Matsunaga (2002). J. Biotechnol.94, (3), 217–224.PubMedCrossRefGoogle Scholar
  17. 17.
    J. Xie, K. Chen, and X. Chen (2009). Nano Res.2, (4), 261–278.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    A. Sahu, K. Prabhash, V. Noronha, A. Joshi, and S. Desai (2013). South Asian J. Cancer2, (2), 91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Z. M. Jiang, S. P. Dai, Y. Q. Xu, T. Li, J. Xie, C. Li, and Z. H. Zhang (2015). Med. Oncol.32, (7), 193.PubMedCrossRefGoogle Scholar
  20. 20.
    R. C. Doebele, A. B. Pilling, D. L. Aisner, T. G. Kutateladze, A. T. Le, A. J. Weickhardt, K. L. Kondo, D. J. Linderman, L. E. Heasley, W. A. Franklin, and M. Varella-Garcia (2012). Clin. Cancer Res.18, (5), 1472–1482.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    R. Katayama, A. T. Shaw, T. M. Khan, M. Mino-Kenudson, B. J. Solomon, B. Halmos, N. A. Jessop, J. C. Wain, A. T. Yeo, C. Benes, and L. Drew (2012). Sci. Transl. Med.4, (120), 1217.CrossRefGoogle Scholar
  22. 22.
    R. D. Blakemore, D. Maratea, and R. S. Wolfe (1979). J. Bacteriol.140, 720–729.PubMedPubMedCentralGoogle Scholar
  23. 23.
    E. Alphandéry, F. Guyot, and I. Chebbi (2012). Int. J. Pharm.434, 444–452.PubMedCrossRefGoogle Scholar
  24. 24.
    M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, and H. E. Toma (2004). J. Magn. Magn. Mater.279, (2), 210–217.CrossRefGoogle Scholar
  25. 25.
    K. Can, M. Ozmen, and M. Ersoz (2009). Colloid Surf. B Biointerfaces71, (1), 154–159.PubMedCrossRefGoogle Scholar
  26. 26.
    P. Utreja, S. Jain, and A. K. Tiwary (2012). Drug Deliv.19, 11–20.PubMedCrossRefGoogle Scholar
  27. 27.
    L. Han, S. Li, Y. Yang, F. Zhao, J. Huang, and J. Chang (2007). J. Magn. Magn. Mater.313, (1), 236–242.CrossRefGoogle Scholar
  28. 28.
    Q. Y. Lai, J. Z. Lu, and X. Y. Ji (2000). Mater. Chem. Phys.66, (1), 6–9.CrossRefGoogle Scholar
  29. 29.
    A. Bharde, et al. (2005). J. Am. Chem. Soc.127, (26), 9326–9327.PubMedCrossRefGoogle Scholar
  30. 30.
    J. Lu, et al. (2007). Small3, (8), 1341–1346.PubMedCrossRefGoogle Scholar
  31. 31.
    L. Guo, J. Huang, X. Zhang, Y. Li, and L. Zheng (2008). J. Mater. Chem.18, (48), 5993–5997.CrossRefGoogle Scholar
  32. 32.
    L. Guo, J. Huang, and L.-M. Zheng (2010). J. Nanosci. Nanotechnol.10, (10), 6514–6565.PubMedCrossRefGoogle Scholar
  33. 33.
    L. Guo, J. Huang, and L.-M. Zheng (2011). Nanotechnology22, (17), 175102.PubMedCrossRefGoogle Scholar
  34. 34.
    J. Baharara, et al. (2016). Avicenna J. Med. Biotechnol.8, (2), 75.PubMedPubMedCentralGoogle Scholar
  35. 35.
    L. Krishnasamy, et al. (2014). Int. J. Pharm. Pharm. Sci.6, 245–248.Google Scholar
  36. 36.
    S. Shukla, et al. (2015). Toxicol. Rep.2, 27–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations