Advertisement

Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review

  • Hamed BarabadiEmail author
  • Hossein Vahidi
  • Mohammad Ali Mahjoub
  • Zahra Kosar
  • Kaveh Damavandi Kamali
  • Karuppiah Ponmurugan
  • Omid Hosseini
  • Masoumeh RashediEmail author
  • Muthupandian SaravananEmail author
Review Paper
  • 29 Downloads

Abstract

Cervical cancer, a malignant neoplasm arising from cervix cells, remains one of the leading global cause of women cancer-related deaths. The present study was aimed to conduct a comprehensive systematic review to show the anticancer activity of biological mediated gold nanoparticles (AuNPs) against cervical cancer cells. To identify the articles, a systematic search was performed through the electronic databases including Web of Science, PubMed, Scopus, Science Direct, ProQuest, Embase, and Cochrane for the articles published up to 31 August 2019. Thirty-three articles met our eligibility criteria and were entered into the present systematic review. Our finding showed that twenty-eight articles stated the biogenic AuNPs-induced cytotoxicity against cervical cancer cells, whereas five reports said no cytotoxicity. In this study, the proposed molecular mechanisms of biogenic AuNPs-induced cytotoxicity were discussed. In total, the studies suggested the induction of apoptosis and overgeneration of intracellular reactive oxygen species (ROS) through the AuNPs-treated cervical cells. The information of this study may help the researchers for translation laboratory setting studies to clinical researches. Future investigations are required to represent the efficacy of biogenic AuNPs through in vivo models alone or combination with other anticancer drugs.

Keywords

Cancer nanotechnology Nanotoxicity Anticancer activity Cervical cancer cells Gold nanoparticles 

Notes

Acknowledgments

This work was financially supported by Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant Number 20417).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah (2018). Beilstein J. Nanotechnol.9, 1050.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    M. Ferrari (2005). Nat. Rev. Cancer.5, 161.PubMedCrossRefGoogle Scholar
  3. 3.
    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci.30, 715.CrossRefGoogle Scholar
  4. 4.
    J. Xu, X. Zhou, Y. Li, and Y. Tian (2017). Curr. Drug Metab.18, 266.PubMedCrossRefGoogle Scholar
  5. 5.
    F. Ordikhani, M. Erdem Arslan, R. Marcelo, I. Sahin, P. Grigsby, J. K. Schwarz, and A. K. Azab (2016). Pharmaceutics.8, 23.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran J. Pharm Res.17, 87.PubMedPubMedCentralGoogle Scholar
  7. 7.
    H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, and M. Saravanan (2019). Inorg Nano-Met Chem.49, 33.CrossRefGoogle Scholar
  8. 8.
    Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran J. Pharm Res.16, 760.Google Scholar
  9. 9.
    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran J. Pharm Res.16, 1167.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Noghabi Z. Sabeti (2019). Iran J. Pharm. Res.18, 210.PubMedPubMedCentralGoogle Scholar
  11. 11.
    S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran J. Pharm Res.18, 430.PubMedPubMedCentralGoogle Scholar
  12. 12.
    L. Qian, W. Su, Y. Wang, M. Dang, W. Zhang, and C. Wang (2019). Artif. Cells Nanomed. Biotechnol.47, 1173.PubMedCrossRefGoogle Scholar
  13. 13.
    B. Patra, R. Gautam, E. Priyadarsini, P. Rajamani, S. N. Pradhan, M. Saravanan, and R. Meena (2019). J. Clust. Sci..  https://doi.org/10.1007/s10876-019-01625-5.CrossRefGoogle Scholar
  14. 14.
    M. P. Patil, E. Bayaraa, P. Subedi, L. L. A. Piad, N. H. Tarte, and G. D. Kim (2019). J. Drug Deliv. Sci. Technol.51, 83.CrossRefGoogle Scholar
  15. 15.
    R. Dharmatti, C. Phadke, A. Mewada, M. Thakur, S. Pandey, and M. Sharon (2014). Mater. Sci. Eng. C44, 92.CrossRefGoogle Scholar
  16. 16.
    P. Sharma, P. J. Babu, and U. Bora (2012). Micro Nano Lett.7, 1296.CrossRefGoogle Scholar
  17. 17.
    R. K. Das, P. Sharma, P. Nahar, and U. Bora (2011). Mater. Lett.65, 610.CrossRefGoogle Scholar
  18. 18.
    P. J. Babu, P. Sharma, M. C. Kalita, and U. Bora (2011). Front Mater. Sci.5, 379.CrossRefGoogle Scholar
  19. 19.
    S. Gupta and M. K. Gupta (2017). Nano Rev. Exp.8, 1335567.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    P. Olusola, H. N. Banerjee, J. V. Philley, and S. Dasgupta (2019). Cells.8, 622.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    T. Sarenac and M. Mikov (2019). Front Pharmacol.10, 484.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman (2009). PLoS Med.6, e1000097.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    H. A. Ghramh, K. A. Khan, E. H. Ibrahim, and W. N. Setzer (2019). Nanomaterials.9, 765.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    E. E. Elemike, D. C. Onwudiwe, N. Nundkumar, M. Singh, and O. Iyekowa (2019). Mater. Lett.243, 148.CrossRefGoogle Scholar
  25. 25.
    H. Singh, J. Du, P. Singh, and T. H. Yi (2018). Artif. Cells Nanomed. Biotechnol.46, 1163.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Camas, A. Sazak Camas, and K. Kyeremeh (2018). Indian J. Microbiol.58, 214.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    E.-Y. Ahn, S. J. Hwang, M.-J. Choi, S. Cho, H.-J. Lee, and Y. Park (2018). Artif. Cells Nanomed. Biotechnol.46, 1127.PubMedCrossRefGoogle Scholar
  28. 28.
    E. Y. Ahn, Y. J. Lee, S. Y. Choi, A. R. Im, Y. S. Kim, and Y. Park (2018). Artif. Cells Nanomed. Biotechnol.46, 1108.PubMedCrossRefGoogle Scholar
  29. 29.
    S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gobi, S. Ravichandran, S. Karthi, B. Ashokkumar, and N. Sivakumar (2017). Microb. Pathog.110, 140.PubMedCrossRefGoogle Scholar
  30. 30.
    P. Seetharaman, R. Chandrasekaran, S. Gnanasekar, I. Mani, and S. Sivaperumal (2017). Biocatal. Agric. Biotechnol.11, 75.CrossRefGoogle Scholar
  31. 31.
    A. Rajan, A. R. Rajan, and D. Philip (2017). OpenNano.2, 1.CrossRefGoogle Scholar
  32. 32.
    P. P. Dutta, M. Bordoloi, K. Gogoi, S. Roy, B. Narzary, D. R. Bhattacharyya, P. K. Mohapatra, and B. Mazumder (2017). Biomed. Pharmacother.91, 567.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    B. Kumar, K. Smita, L. Cumbal, J. Camacho, E. Hernández-Gallegos, Chávez-López M. de Guadalupe, M. Grijalva, and K. Andrade (2016). Mater. Sci Eng. C.62, 725.CrossRefGoogle Scholar
  34. 34.
    A. A. Kajani, A. K. Bordbar, S. H. Zarkesh Esfahani, and A. Razmjou (2016). RSC Adv.6, 63973.CrossRefGoogle Scholar
  35. 35.
    N. Dorosti and F. Jamshidi (2016). J. Appl. Biomed.14, 235.CrossRefGoogle Scholar
  36. 36.
    P. Balashanmugam, P. Durai, M. D. Balakumaran, and P. T. Kalaichelvan (2016). J. Photochem. Photobiol. B.165, 163.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    J. Baharara, T. Ramezani, A. Divsalar, M. Mousavi, and A. Seyedarabi (2016). Avicenna J. Med. Biotechnol.8, 75.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Z. Ajdari, H. Rahman, K. Shameli, R. Abdullah, M. Abd Ghani, S. Yeap, S. Abbasiliasi, D. Ajdari, and A. Ariff (2016). Molecules.21, 123.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    S. Yallappa, J. Manjanna, B. L. Dhananjaya, U. Vishwanatha, B. Ravishankar, and H. Gururaj (2015). J. Mater. Sci.: Mater. Med. 26.Google Scholar
  40. 40.
    A. Rajan, V. Vilas, and D. Philip (2015). J. Mol. Liq.212, 331.CrossRefGoogle Scholar
  41. 41.
    P. Manivasagan and J. Oh (2015). Mar Drugs.13, 6818.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    P. Manivasagan, M. S. Alam, K. H. Kang, M. Kwak, and S. K. Kim (2015). Bioprocess Biosyst Eng.38, 1167.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    S. Lokina, R. Suresh, K. Giribabu, A. Stephen, R. L. Sundaram, and V. Narayanan (2014). Spectrochim. Acta Part A129, 484.CrossRefGoogle Scholar
  44. 44.
    M. Jeyaraj, R. Arun, G. Sathishkumar, D. MubarakAli, M. Rajesh, G. Sivanandhan, G. Kapildev, M. Manickavasagam, N. Thajuddin, and A. Ganapathi (2014). Mater. Res. Bull.52, 15.CrossRefGoogle Scholar
  45. 45.
    S. Geetha, J. SathakkathulZariya, R. Aarthi, and H. Blessie (2014). J. Chem. Pharm. Sci. Special Issue4, 172.Google Scholar
  46. 46.
    T. S. Dhas, V. G. Kumar, V. Karthick, K. Govindaraju, and Narayana T. Shankara (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc.133, 102.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    M. Anand, V. Selvaraj, M. Alagar, and J. Ranjitha (2014). Asian J. Pharm. Clin. Res.7, 136.Google Scholar
  48. 48.
    Y. W. Lin, Y. C. Chen, C. W. Wang, W. T. Chen, C. M. Liu, C. Y. Chen, and H. T. Chang (2013). J. Nanosci. Nanotechnol.13, 6566.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    M. Naghdi, M. Taheran, S. K. Brar, M. Verma, R. Y. Surampalli, and J. R. Valero (2015). Beilstein J. Nanotechnol.6, 2354.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    N. Phougat, M. Kumar, R. V. Saini, and A. K. Chhillar Green chemistry approach towards nanoparticle synthesis. in V. C. Kalia and A. K. Saini (eds.), Metabolic engineering for bioactive compounds: strategies and processes (Springer, Singapore, 2017), p. 249.CrossRefGoogle Scholar
  51. 51.
    H. Duan, D. Wang, and Y. Li (2015). Chem. Soc. Rev.44, 5778.PubMedCrossRefGoogle Scholar
  52. 52.
    S. Menon, S. Rajeshkumar, and V. Kumar (2017). Resour. Effic. Technol.3, 516.CrossRefGoogle Scholar
  53. 53.
    M. Ovais, A. T. Khalil, M. Ayaz, I. Ahmad, S. K. Nethi, and S. Mukherjee (2018). Int. J. Mol. Sci.19, 4100.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine.11, 3157.PubMedCrossRefGoogle Scholar
  55. 55.
    M. Camas, F. Celik, A. Sazak Camas, and H. B. Ozalp (2019). Part. Sci. Technol.37, 31.CrossRefGoogle Scholar
  56. 56.
    I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo (2015). Nano Res.8, 1771.CrossRefGoogle Scholar
  57. 57.
    B. D. Chithrani, A. A. Ghazani, and W. C. Chan (2006). Nano Lett.6, 662.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    G. Tomoaia, O. Horovitz, A. Mocanu, A. Nita, A. Avram, C. P. Racz, O. Soritau, M. Cenariu, and M. Tomoaia-Cotisel (2015). Colloids Surf B Biointerfaces.135, 726.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    E. C. Dreaden, L. A. Austin, M. A. Mackey, and M. A. El-Sayed (2012). Ther. Deliv.3, 457.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biotechnology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Pharmaceutics, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Golestan University of Medical Sciences, Food and Drug AdministrationGorganIran
  4. 4.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Shahid Beheshti University of Medical SciencesTehranIran
  6. 6.School of MedicineGonabad University of Medical SciencesGonabadIran
  7. 7.Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations