Advertisement

Isolation and Structures of One- and Two-Dimensional High-Nuclearity Silver(I) Clusters from a Silver Propane-2-thiolate Chain

  • Ai-Quan Jia
  • Ming-Ming Sheng
  • Guang Che
  • Chao Xu
  • Qian-Feng ZhangEmail author
Original paper
  • 26 Downloads

Abstract

Interaction of [Ag(SiPr)]n and CF3CO2Ag in methanol led to isolation of a one-dimensional chain silver cluster {[Ag24(μ-OH2)2(μ-O2CCF3)101-O2CCF3)24-SiPr)12(OH2)4(HOCH3)6]·(H2O)4}n (1). Reaction of [Ag(SiPr)]n and Et4N·I in dimethylformide gave a tubular cluster [Ag368-I)63-SiPr)30]n (2). Treatment of a mixed suspension of [Ag(SiPr)]n/AgI in methanol with HSiPr in the presence of Et3N resulted in formation of a two-dimensional anionic cluster {(HNEt3)4[Ag362-I)43-I)84-I)123-SiPr)16]}n (3). Structures of three clusters were established by single crystal X-ray diffraction and their solid ultraviolet properties were also investigated.

Graphic Abstract

Three polymeric frameworks of high-nuclearity silver(I) thiolate clusters have been isolated employing [Ag(SiPr)]n as a starting material and their structures were characterized by single-crystal X-ray diffraction.

Keywords

Poly-nuclear silver(I) complex Polymer Thiolate Coordination assembly Crystal structure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (90922008) and Young Wanjiang Scholar program of Anhui Province.

References

  1. 1.
    Z. Wang, H.-F. Su, M. Kurmoo, C.-H. Tung, D. Sun, and L.-S. Zheng (2018). Nat. Commun.9, 2094.CrossRefGoogle Scholar
  2. 2.
    X. Meng, F. Wang, and G.-X. Jin (2010). Coord. Chem. Rev.254, 1260.CrossRefGoogle Scholar
  3. 3.
    B. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. X. Wang, J. van Tol, N. S. Dalal, K. Y. Choi, R. N. Biboum, B. Keita, L. Nadjo, and U. Kortz (2011). Angew. Chem. Int. Ed.50, 5961.CrossRefGoogle Scholar
  4. 4.
    T. Wu, F. Zuo, L. Wang, X. H. Bu, S. T. Zheng, R. Ma, and P. Y. Feng (2011). J. Am. Chem. Soc.133, 15886.CrossRefGoogle Scholar
  5. 5.
    S. P. Argent, A. Greenaway, M. D. C. Gimenez-Lopez, W. Lewis, H. Nowell, A. N. Khlobystov, A. J. Blake, N. R. Champness, and M. Schröder (2012). J. Am. Chem. Soc.134, 55.CrossRefGoogle Scholar
  6. 6.
    Q.-M. Wang, Y.-M. Lin, and K.-G. Liu (2015). Acc. Chem. Res.48, 1570.CrossRefGoogle Scholar
  7. 7.
    Z. Li, X.-X. Li, T. Yang, Z.-W. Cai, and S.-T. Zheng (2017). Angew. Chem. Int. Ed.56, 2664.CrossRefGoogle Scholar
  8. 8.
    O. Fuhr, S. Dehnen, and D. Fenske (2013). Chem. Soc. Rev.42, 1871.CrossRefGoogle Scholar
  9. 9.
    H. Y. Yang, Y. Wang, H. Q. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, and N. F. Zheng (2013). Nat. Commun.4, 2422.CrossRefGoogle Scholar
  10. 10.
    X.-L. Pei, Y. Yang, Z. Lei, and Q.-M. Wang (2013). J. Am. Chem. Soc.135, 6435.CrossRefGoogle Scholar
  11. 11.
    Z. Wang, X.-Y. Li, L.-W. Liu, S.-Q. Yu, Z.-Y. Feng, C.-H. Tung, and D. Sun (2016). Chem. Eur. J.22, 6830.CrossRefGoogle Scholar
  12. 12.
    S. Li, X.-S. Du, J.-Y. Wang, G.-P. Li, G.-G. Gao, and S.-Q. Zang (2018). J. Am. Chem. Soc.140, 594.CrossRefGoogle Scholar
  13. 13.
    V. W.-W. Yam and K. M.-C. Wong (2011). Chem. Commun.47, 11579.CrossRefGoogle Scholar
  14. 14.
    X.-D. Wang, O. S. Wolfbeis, and R. J. Meier (2013). Chem. Soc. Rev.42, 7834.CrossRefGoogle Scholar
  15. 15.
    Y.-L. Li, W.-M. Zhang, J. Wang, Y. Tian, Z. Y. Wang, C. X. Du, S.-Q. Zang, and T. C. W. Mak (2018). Dalton Trans.47, 14884.CrossRefGoogle Scholar
  16. 16.
    S. Bestgen, O. Fuhr, B. Breitung, V. S. Kiran, G. Chakravadhanula, F. Guthausen, W. Hennrich, M. M. Yu, P. W. Kappes, and D. Fenske Roeskya (2017). Chem. Sci.8, 2235.CrossRefGoogle Scholar
  17. 17.
    M. Hailmann, N. Wolf, R. Renner, T. C. Schäfer, B. Hupp, A. Steffen, and M. Finze (2016). Angew. Chem. Int. Ed.55, 10507.CrossRefGoogle Scholar
  18. 18.
    A. M. Polgar, F. Weigend, A. Zhang, M. J. Stillman, and J. F. Corrigan (2017). J. Am. Chem. Soc.139, 14045.CrossRefGoogle Scholar
  19. 19.
    J.-W. Liu, L. Feng, H. Su, Z. Wang, Q.-Q. Zhao, X. Wang, C.-H. Tung, D. Sun, and L.-S. Zheng (2018). J. Am. Chem. Soc.140, 1600.CrossRefGoogle Scholar
  20. 20.
    M. S. Bootharaju, C. P. Joshi, M. J. Alhilaly, and O. M. Bakr (2016). Chem. Mater.28, 3292.CrossRefGoogle Scholar
  21. 21.
    Y. Liu, B. K. Najafabadi, M. A. Fard, and J. F. Corrigan (2015). Angew. Chem. Int. Ed.54, 4832.CrossRefGoogle Scholar
  22. 22.
    D. Rais, J. Yau, D. M.-P. Mingos, R. Vilar, A. J.-P. White, and D. J. Williams (2001). Angew. Chem. Int. Ed.40, 3464.CrossRefGoogle Scholar
  23. 23.
    Y.-P. Xie, J.-L. Jin, G.-X. Duan, X. Lu, and T. C. W. Mak (2017). Coord. Chem. Rev.331, 54.CrossRefGoogle Scholar
  24. 24.
    Y.-P. Xie, J.-L. Jin, X. Lu, and T. C. W. Mak (2015). Angew. Chem. Int. Ed.54, 15176.CrossRefGoogle Scholar
  25. 25.
    J.-L. Jin, Y.-P. Xie, H. Cui, G.-X. Duan, and T. C. W. Mak (2017). Inorg. Chem.56, 10412.CrossRefGoogle Scholar
  26. 26.
    S. Li, Z.-Y. Wang, G.-G. Gao, B. Li, P. Luo, Y.-J. Kong, H. Liu, and S.-Q. Zang (2018). Angew. Chem. Int. Ed.57, 1.CrossRefGoogle Scholar
  27. 27.
    J.-H. Liao, C. Latouche, B. Li, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2014). Inorg. Chem.53, 2260.CrossRefGoogle Scholar
  28. 28.
    X.-Y. Li, H.-F. Su, K. Yu, Y.-Z. Tan, X.-P. Wang, Y.-Q. Zhao, D. Sun, and L.-S. Zheng (2015). Nanoscale7, 8284.CrossRefGoogle Scholar
  29. 29.
    Z. Wang, H.-F. Su, Y.-Z. Tan, S. Schein, S.-C. Lin, W. Liu, S.-A. Wang, W.-G. Wang, C.-H. Tung, D. Sun, and L.-S. Zheng (2017). PNAS114, 12132.CrossRefGoogle Scholar
  30. 30.
    Y.-J. Li, C. Latouche, S. Kahlal, J.-H. Liao, R. S. Dhayal, J.-Y. Saillard, and C. W. Liu (2012). Inorg. Chem.51, 7439.CrossRefGoogle Scholar
  31. 31.
    B. Li, J.-H. Liao, Y.-J. Li, and C. W. Liu (2013). CrystEngComm15, 6140.CrossRefGoogle Scholar
  32. 32.
    J.-H. Liao, H.-W. Chang, Y.-J. Li, C.-S. Fang, B. Sarkar, W. E. van Zyl, and C. W. Liu (2014). Dalton Trans.43, 12380.CrossRefGoogle Scholar
  33. 33.
    I. G. Dance, K. J. Fisher, R. M. H. Banda, and M. L. Scudder (1991). Inorg. Chem.30, 183.CrossRefGoogle Scholar
  34. 34.
    G. M. Sheldrick SADABS (University of Göttingen, Germany, 1996).Google Scholar
  35. 35.
    G. M. Sheldrick, SHELXTL Software Reference Manual (Version 5.1) (Bruker AXS Inc., Madison, 1997).Google Scholar
  36. 36.
    G. M. Sheldrick (2008). Acta Crystallogr. A64, 112.CrossRefGoogle Scholar
  37. 37.
    A. L. Spek (2015). Acta Cryst. C71, 9.CrossRefGoogle Scholar
  38. 38.
    S.-Z. Zhan, M. Li, X.-P. Zhou, J.-H. Wang, J.-R. Yang, and D. Li (2011). Chem. Commun.47, 12441.CrossRefGoogle Scholar
  39. 39.
    G. Li, Z. Lei, and Q.-M. Wang (2010). J. Am. Chem. Soc.132, 17678.CrossRefGoogle Scholar
  40. 40.
    K. Zhou, X.-L. Wang, C. Qin, H.-N. Wang, G.-S. Yang, Y.-Q. Jiao, P. Huang, K.-Z. Shao, and Z.-M. Su (2013). Dalton Trans.42, 1352.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ai-Quan Jia
    • 1
  • Ming-Ming Sheng
    • 1
  • Guang Che
    • 1
  • Chao Xu
    • 1
  • Qian-Feng Zhang
    • 1
    Email author
  1. 1.Institute of Molecular Engineering and Applied Chemistry, Anhui University of TechnologyMa’anshanPeople’s Republic of China

Personalised recommendations