Sustainable Utilization of Molasses Towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications

  • Manjari Gangarapu 
  • Parthiban Anaikutti 
  • Saran Sarangapany Email author
Original Paper


A novel and facile synthetic route were evaluated towards the formation of silver nanoparticles (AgNPs) by exploiting molasses as a biomaterial for the first time. The sugar molasses is a viscous material produced from sugarcane refining and the bio-components responsible for the formation of crystalline AgNPs validated by FTIR, UV–Vis spec., EDX, and XRD. The almost oval-shaped AgNPs with an average of 16 nm size were analyzed through DLS and TEM, respectively. Based on the significant characterization results, the AgNPs was employed for simple colorimetric detection of mercury (Hg2+) at low concentration. Here, we also described its catalytic efficacy for the reduction of 4-NP. The AgNPs found to have excellent efficacy in the detection of Hg2+ at 0.02 µM concentration. It also proved to have a prominent role in the reduction of 4-NP with 80% conversion efficiency even after 6 cycles. Combining highly selective and sensitive sensors as well as efficient and convenience catalysts have been proposed as detection and catalyzing nanomaterial for the environmental pollutants in water. The approach in this work is cost-effective and provides potential opportunities in environmental fields for a sustainable future.


Bio-synthesis Molasses Ag nanoparticles Catalysis Sensors 



The authors thank the Pondicherry University for its Central instrumentation facility.


  1. 1.
    G. Manjari, S. Saran, T. Arun, A. V. B. Rao, and S. P. Devipriya (2017). J. Saudi Chem. Soc.21, 610.CrossRefGoogle Scholar
  2. 2.
    P. Velmurugan, M. Iydroose, S. M. Lee, M. Cho, J. H. Park, V. Balachandar, and B. T. Oh (2014). Ind. J. Micro.54, 196.CrossRefGoogle Scholar
  3. 3.
    P. S. Devipriya, S. Banerjee, S. R. Chowdhury, and G. S. Kumar (2012). RSC Adv.2, 11578.CrossRefGoogle Scholar
  4. 4.
    R. G. Saratale, G. D. Saratale, H. S. Shin, J. M. Jacob, A. Pugazhendhi, M. Bhaisare, and G. Kumar (2018). Environ. Sci. Poll. Res.25, 10164.CrossRefGoogle Scholar
  5. 5.
    R. Mythili, T. Selvankumar, S. Kamala-Kannan, C. Sudhakar, F. Ameen, A. Al-Sabri, K. Selvam, M. Govarthanan, and H. Kim (2018). Mater. Lett.225, 101.CrossRefGoogle Scholar
  6. 6.
    M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev.11, 125.CrossRefGoogle Scholar
  7. 7.
    A. Schieber, F. C. Stintzing, and R. Carle (2001). Tren. Food Sci. Technol.12, 401.CrossRefGoogle Scholar
  8. 8.
    D. Yan, Y. Lu, Y. F. Chen, and Q. Wu (2011). Biores. Technol.102, 6487.CrossRefGoogle Scholar
  9. 9.
    M. Nitschke and S. G. Costa (2007). Tren. Food Sci. Technol.18, 252.CrossRefGoogle Scholar
  10. 10.
    J. Xia, Z. Xu, H. Xu, J. Liang, S. Li, and X. Feng (2014). Bioresour. Technol.164, 241.PubMedCrossRefGoogle Scholar
  11. 11.
    L. Wu, S. Wu, J. Qiu, C. Xu, S. Li, and H. Xu (2017). Food Chem.229, 761.PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Nagai, T. Mizutani, H. Iwabe, S. Araki and M. Suzuki (2001). In: Proceedings of the 60th annual meeting of sugar industry technologists in Taiwan 2001.Google Scholar
  13. 13.
    C. M. Gumiaraes, M. S. Giao, S. S. Martinez, A. L. Pintado, M. E. Pintado, L. S. Bento, and F. X. Malcata (2007). J. Food Sci.72, 39.CrossRefGoogle Scholar
  14. 14.
    A. Scalbert, C. Manach, C. Morand, C. Rémésy, and L. Jiménez (2005). Crit. Rev. Food Sci. Nut.45, 287.CrossRefGoogle Scholar
  15. 15.
    B. Payet, A. Shum, C. Sing, and J. Smadja (2006). J. Agric. Food Chem.54, 7270.PubMedCrossRefGoogle Scholar
  16. 16.
    V. Valli, A. M. Gómez-Caravaca, M. Di Nunzio, F. Danesi, M. F. Caboni, and A. Bordoni (2012). J Agric. Food Chem.60, 12508.PubMedCrossRefGoogle Scholar
  17. 17.
    J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem.410, 4519.PubMedCrossRefGoogle Scholar
  18. 18.
    K. Wu, X. Zhao, M. Chen, H. Zhang, Z. Liu, X. Zhang, X. Zhu, and Q. Liu (2018). New J. Chem.42, 9578.CrossRefGoogle Scholar
  19. 19.
    W. Huang, Y. Deng, and Y. He (2017). Biosens. Bioelectron.91, 89.PubMedCrossRefGoogle Scholar
  20. 20.
    Y. T. Wong, S. Y. Pang, M. K. Tsang, Y. Liu, H. Huang, S. F. Yu, and J. Hao (2019). Nanoscale Adv.1, 265.CrossRefGoogle Scholar
  21. 21.
    Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang, and J. Xu (2015). Biosens. Bioelectron.64, 147.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Y. He, B. Xu, W. Li, and H. Yu (2015). J. Agric. Food Chem.63, 2930.PubMedCrossRefGoogle Scholar
  23. 23.
    K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sens. Actuators B Chem.161, 880.CrossRefGoogle Scholar
  24. 24.
    M. Chen, B. Yang, J. Zhu, H. Liu, X. Zhang, X. Zheng, and Q. Liu (2018). Mat. Sci. Eng. C90, 610.CrossRefGoogle Scholar
  25. 25.
    K. Aslan, J. R. Lakowicz, and C. D. Geddes (2005). Analyt. Chem.77, 2007.CrossRefGoogle Scholar
  26. 26.
    P. G. Mahajan, N. C. Dige, B. D. Vanjare, A. R. Phull, S. J. Kim, and K. H. Lee (2019). J. Lumines.206, 624.CrossRefGoogle Scholar
  27. 27.
    M. Gangarapu, S. Sarangapany, K. K. Veerabhali, S. P. Devipriya, and V. B. R. Arava (2017). J. Clus. Sci.28, 3127.CrossRefGoogle Scholar
  28. 28.
    G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao, and X. Su (2017). ACS Appl. Mater. Interface.9, 18207.CrossRefGoogle Scholar
  29. 29.
    Y. Junejo, A. Baykal, M. Safdar, and A. Balouch (2017). Appl. Surf. Sci.290, 499.CrossRefGoogle Scholar
  30. 30.
    M. Gangarapu, S. Sarangapany, D. P. Suja, and V. B. R. Arava (2018). Appl. Nanosci.8, 1123.CrossRefGoogle Scholar
  31. 31.
    A. S. Santhosh, S. Sandeep, and N. K. Swamy (2019). Surf. Interfac.14, 50.CrossRefGoogle Scholar
  32. 32.
    S. Saran, G. Manjari, and S. P. Devipriya (2018). Catal. Lett.44, 1.Google Scholar
  33. 33.
    R. Sankar, A. Karthik, K. Prabu, S. Karthik, K. S. Shivashangari, and V. Ravikumar (2013). Coll. Surf. B Biointerf.108, 80–84.CrossRefGoogle Scholar
  34. 34.
    M. R. C. Sytu and D. H. Camacho (2018). Biol. Nano. Sci.8, 835.Google Scholar
  35. 35.
    Z. Zhang, T. Si, J. Liu, K. Han, and G. Zhou (2018). RSC Adv.8, 27349.CrossRefGoogle Scholar
  36. 36.
    G. Manjari, S. Saran, T. Arun, S. P. Devipriya, and A. V. B. Rao (2017). J. Clus. Sci.28, 2041.CrossRefGoogle Scholar
  37. 37.
    R. S. Priya, D. Geetha, and P. S. Ramesh (2016). Ecotox. Environ. Saf.134, 308.CrossRefGoogle Scholar
  38. 38.
    V. Marimuthu, S. Chandirasekar, and N. Rajendiran (2018). Chem. Select.3, 3918.Google Scholar
  39. 39.
    A. Amirjani and D. F. Haghshenas (2019). Talanta192, 418.PubMedCrossRefGoogle Scholar
  40. 40.
    M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran (2014). ACS Sustain Chem. Eng.2, 887.CrossRefGoogle Scholar
  41. 41.
    P. Buduru, B. S. R. Reddy, and N. V. S. Naidu (2017). Sens. Actua. B Chem.244, 972.CrossRefGoogle Scholar
  42. 42.
    D. Sahu, N. Sarkar, G. Sahoo, P. Mohapatra, and S. K. Swain (2017). Sens. Actuat B Chem.246, 96.CrossRefGoogle Scholar
  43. 43.
    V. Kumar, D. K. Singh, S. Mohan, D. Bano, R. K. Gundampati, and S. H. Hasan (2017). J. Photochem. Photobiol. B Biol.168, 67.CrossRefGoogle Scholar
  44. 44.
    Z. Yan, L. Fu, X. Zuo, and H. Yang (2018). Appl. Cat. B: Environ.226, 23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Manjari Gangarapu 
    • 1
  • Parthiban Anaikutti 
    • 2
  • Saran Sarangapany 
    • 3
    Email author
  1. 1.Department of Ecology and Environmental SciencesPondicherry UniversityPuducherryIndia
  2. 2.National Centre for Sustainable Coaster ManagementChennaiIndia
  3. 3.Centre for the Environment, Indian Institute of TechnologyGuwahatiIndia

Personalised recommendations