A Highly Porous Co-MOF for Cyanosilylation Reaction and Inhibition on P. gingivalis Growth and rgp and kgp Expression for Periodontal Treatment

  • Xin-Peng Dai
  • Yu-Ze Hou
  • Jian Guan
  • Lu-Bin Liu
  • Han Wang
  • Li-Bo ZhouEmail author
Original Paper


A novel porous three-dimensional Co(II) organic framework of metal, [{Co2(TCPP)(H2O)}·DMF]n (1), (where H4TCPP = 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine) was synthesized under the solvent thermal condition, consisting of a H4TCPP ligand which is rigid and tetratopic. Intriguingly, the centers of Co(II) coordinated water molecules can be dislodged via activating 1 under 120 °C, resulting in a pores skeleton arranged by Lewis acidic Co(II) ions which are unsaturated. Activated 1 has great activity of catalysis for without solvent cyanosilylation of acetaldehydes under mild conditions. To develop the candidates for the periodontal diseases therapy, the inhibitory effect of the compound on the growth curves of Porphyromonas gingivalis was evaluated. Next, the RT-PCR detection of rgp and kgp was conducted to explore the effect of compound on the key gene expression.


MOF Hetero-donor organic ligand Porous framework Cyanosilylation reaction Periodontal diseases 



This work was supported by Grants from Scientific Research Topics of Heilongjiang Health and Family Planning Commission (2017-412).


  1. 1.
    H. Li, G. Gao, R. Chen, X. Ge, S. Guo, and L. Y. Hao (2019). Int. J. Softw. Eng. Knowl.29, 93.CrossRefGoogle Scholar
  2. 2.
    M. A. Durhan, O. B. Agrali, E. Kiyan, N. B. Ikizoglu, R. Ersu, and I. Tanboga (2019). Niger. J. Clin. Pract.22, 1175.CrossRefGoogle Scholar
  3. 3.
    S. Y. Yoo, J. S. Lee, J. K. Cha, S. K. Kim, and C. S. Kim (2019). J. Periodontal Implant.49, 215.CrossRefGoogle Scholar
  4. 4.
    S. Guo, R. Chen, H. Li, T. Zhang, and Y. Liu (2019). Int. J. Softw. Eng. Knowl.29, 139.CrossRefGoogle Scholar
  5. 5.
    D. Yuan, C. Zhang, S. Tang, X. Li, J. Tang, Y. Rao, Z. Wang, and Q. Zhang (2019). Water Res.163, 114861.CrossRefGoogle Scholar
  6. 6.
    X. Feng, Y. Q. Feng, J. J. Chen, and L. Y. Wang (2015). Dalton Trans.244, 804.CrossRefGoogle Scholar
  7. 7.
    X. Feng, L. F. Ma, L. Liu, S. Y. Xie, and L. Y. Wang (2013). Cryst. Growth Des.13, 4469.CrossRefGoogle Scholar
  8. 8.
    X. Feng, L. Y. Wang, J. S. Zhao, J. G. Wang, S. W. Ng, B. Liu, and X. G. Shi (2010). CrystEngComm12, 774.CrossRefGoogle Scholar
  9. 9.
    C. W. Duan, L. X. Hu, and J. L. Ma (2018). J. Mater. Chem. A6, 6309.CrossRefGoogle Scholar
  10. 10.
    C. Duan, Y. Cao, L. Hu, D. Fu, J. Ma, and J. Youngblood (2019). J. Hazard. Mater.373, 141.CrossRefGoogle Scholar
  11. 11.
    H. Wu, F. Chi, S. Zhang, J. Wen, J. Xiong, and S. Hu (2019). Microporous Mesoporous Mater.288, 109567.CrossRefGoogle Scholar
  12. 12.
    J. Qian, F. Jiang, K. Su, J. Pan, Z. Xue, L. Liang, P. P. Bag, and M. Hong (2014). Chem. Commun.50, 15224.CrossRefGoogle Scholar
  13. 13.
    U. Schubert (2011). Chem. Soc. Rev.40, 575.CrossRefGoogle Scholar
  14. 14.
    R. J. Marshall and R. S. Forgan (2016). Eur. J. Inorg. Chem.2016, 4310.CrossRefGoogle Scholar
  15. 15.
    W. W. Zhou, W. Zhao, F. W. Wang, W. Y. Fang, D. F. Liu, Y. J. Wei, M. Xu, X. Zhao, and X. Liang (2015). RSC Adv.5, 42616.CrossRefGoogle Scholar
  16. 16.
    J. J. Song, F. Gallou, J. T. Reeves, Z. Tan, N. K. Yee, and C. H. Senanayake (2006). J. Org. Chem.71, 1273.CrossRefGoogle Scholar
  17. 17.
    Y. Kikukawa, K. Suzuki, M. Sugawa, T. Hirano, K. Kamata, K. Yamaguchi, and N. Mizuno (2012). Angew. Chem. Int. Ed.51, 3686.CrossRefGoogle Scholar
  18. 18.
    X. Cui, M. C. Xu, L. J. Zhang, R. X. Yao, and X. M. Zhang (2015). Dalton Trans.44, 12711.CrossRefGoogle Scholar
  19. 19.
    N. Kurono and T. Ohkuma (2016). ACS Catal.6, 989.CrossRefGoogle Scholar
  20. 20.
    A. Karmakar, G. M. D. M. Rúbio, A. Paul, M. F. C. Guedes da Silva, K. T. Mahmudov, F. I. Guseinov, S. A. C. Carabineiro, and A. J. L. Pombeiro (2017). Dalton Trans.46, 8649.CrossRefGoogle Scholar
  21. 21.
    Z. Ma, A. V. Gurbanov, M. Sutradhar, M. N. Kopylovich, K. T. Mahmudov, A. M. Maharramov, F. I. Guseinov, F. I. Zubkov, and A. J. L. Pombeiro (2017). Mol. Catal.428, 17.CrossRefGoogle Scholar
  22. 22.
    A. V. Gurbanov, K. T. Mahmudov, M. Sutradhar, F. C. Guedes da Silva, T. A. Mahmudov, F. I. Guseinov, F. I. Zubkov, A. M. Maharramov, and A. J. L. Pombeiro (2017). J. Organomet. Chem.834, 22.CrossRefGoogle Scholar
  23. 23.
    A. G. Mahmoud, K. T. Mahmudov, M. F. C. Guedes da Silva, and A. J. L. Pombeiro (2016). RSC Adv.6, 54263.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick (2015). Acta Crystallogr. C71, 3.CrossRefGoogle Scholar
  25. 25.
    A. L. Spek (2015). Acta Crystallogr. C71, 9.CrossRefGoogle Scholar
  26. 26.
    D. M. Chen and X. J. Zhang (2019). J. Solid State Chem.278, 120906.CrossRefGoogle Scholar
  27. 27.
    D. M. Chen and X. J. Zhang (2019). CrystEngComm21, 4696.CrossRefGoogle Scholar
  28. 28.
    K. T. Mahmudov, A. V. Gurbanov, F. I. Guseinov, and M. F. C. Guedes da Silva (2019). Coord. Chem. Rev.387, 32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xin-Peng Dai
    • 1
  • Yu-Ze Hou
    • 2
  • Jian Guan
    • 1
  • Lu-Bin Liu
    • 3
  • Han Wang
    • 4
  • Li-Bo Zhou
    • 3
    Email author
  1. 1.Maxillofacial SurgeryJiamusi UniversityJiamusiChina
  2. 2.Department of RepairJiamusi UniversityJiamusiChina
  3. 3.Dental PulpologyJiamusi UniversityJiamusiChina
  4. 4.Dental ImplantJiamusi UniversityJiamusiChina

Personalised recommendations