Preparation and Enhanced Photo-/Electro-Catalytic Activities of Polypyrrole Coating [CuMo12O40]6− POM Based MOF Composite

  • Jingwei Zhang
  • Jisheng ZhangEmail author
Original Paper


A new polyoxometalates (POMs) based hybrid compound with helical chains, H4[Cu2(bpe)3](CuMo12O40) (Cu2CuMo12) (bpe = bis(4-pyridyl)ethylene), was synthesized by the reaction of Cu(NO3)2 (NH4)6Mo7O24 and bpe, and characterized by elemental analyses, IR, PXRD and X-ray single crystal diffraction, in which the Keggin-type [CuMo12O40]6− polyoxoanion was fabricated in suit. Moreover, to improve the photo-/electo-catalytic activities, the polypyrrole (PPy) coating Cu2CuMo12 composites (Cu2CuMo12/PPy-n) have been prepared and exhibited excellent photo- and electro-catalytic activities. More specifically, the photocatalytic decomposition rate of methylene blue (MB) using the Cu2CuMo12/PPy-2 as catalyst is 93.1% under the visible light, which is much larger than that of Cu2CuMo12 (13.1%). The electrochemical properties of Cu2CuMo12/PPy-2 exhibit similar redox behavior to the Cu2CuMo12, involving two-, four- and six-electron-reduced species for the reduction of nitrite.


Polyoxometalates Metal–organic framework Helix Electrocatalytic activity Photocatalytic activity 



Financial support from Heilongjiang Provincial Health and Family Planning Commission on Scientific Research Project (2017-405).

Supplementary material

10876_2019_1710_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 3014 kb)
10876_2019_1710_MOESM2_ESM.cif (555 kb)
Supplementary material 2 (CIF 555 kb)
10876_2019_1710_MOESM3_ESM.pdf (260 kb)
Supplementary material 3 (PDF 259 kb)


  1. 1.
    C. L. Hill (1998). Chem. Rev.98, 1.CrossRefPubMedGoogle Scholar
  2. 2.
    J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev.98, 327.CrossRefPubMedGoogle Scholar
  3. 3.
    S. Uchida, R. Kawamoto, H. Tagami, Y. Nakagawa, and N. Mizuno (2008). J. Am. Chem. Soc.130, 12370.CrossRefPubMedGoogle Scholar
  4. 4.
    X. H. Wang, J. F. Liu, J. X. Li, Y. Yang, J. T. Liu, B. Li, and M. T. Pope (2003). J. Inorg. Biochem.94, 279.CrossRefPubMedGoogle Scholar
  5. 5.
    J. M. Clemente-Juan and E. Coronado (1999). Coord. Chem. Rev.193, 361.CrossRefGoogle Scholar
  6. 6.
    D. L. Long, H. Abbas, P. Kögerler, and L. Cronin (2005). Angew. Chem. Int. Ed.44, 3415.CrossRefGoogle Scholar
  7. 7.
    Y. F. Song and R. Tsunashima (2012). Chem. Soc. Rev.41, 7384.CrossRefPubMedGoogle Scholar
  8. 8.
    S. S. Wang and G. Y. Yang (2015). Chem. Rev.115, 4893.CrossRefPubMedGoogle Scholar
  9. 9.
    H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, and C. L. Hill (2012). Chem. Soc. Rev.41, 7572.CrossRefPubMedGoogle Scholar
  10. 10.
    C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, and Z. M. Su (2009). J. Am. Chem. Soc.131, 1883.CrossRefPubMedGoogle Scholar
  11. 11.
    L. J. Xu, W. Z. Zhou, L. Y. Zhang, B. Li, H. Y. Zang, Y. H. Wang, and Y. G. Li (2015). Cryst. Eng. Comm.17, 3708.CrossRefGoogle Scholar
  12. 12.
    X. L. Wang, N. Li, A. X. Tian, J. Ying, T. J. Li, X. L. Lin, J. Luan, and Y. Yang (2014). Inorg. Chem.53, 7118.CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Q. Chen, G. R. Li, Y. K. Qu, Y. H. Zhang, K. H. He, Q. Gao, and X. H. Bu (2013). The frequency parameter controls the distended. Cryst. Growth Des.13, 901.CrossRefGoogle Scholar
  14. 14.
    X. L. He, Y. P. Liu, K. N. Gong, Z. G. Han, and X. L. Zhai (2015). Inorg. Chem.4, 1215.CrossRefGoogle Scholar
  15. 15.
    R. D. Gall, C. L. Hill, and J. E. Walker (1996). Chem. Mater.8, 2523.CrossRefGoogle Scholar
  16. 16.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck (1992). Nature359, 710.CrossRefGoogle Scholar
  17. 17.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky (1998). Science279, 548.CrossRefPubMedGoogle Scholar
  18. 18.
    S. Wang, H. L. Li, L. Y. Zhang, B. Li, X. Cao, G. H. Zhang, S. L. Zhang, and L. X. Wu (2014). Chem. Commun.50, 9700.CrossRefGoogle Scholar
  19. 19.
    Y. Y. Chen, M. Han, Y. Y. Tang, J. C. Bao, S. L. Li, Y. Q. Lan, and Z. H. Dai (2015). Chem. Commun.51, 12377.CrossRefGoogle Scholar
  20. 20.
    K. Alimaje, X. Wang, Z. Y. Zhang, J. Peng, Z. Y. Shi, X. Yu, and Z. X. Ren (2013). J. Clust. Sci.24, 1021.CrossRefGoogle Scholar
  21. 21.
    A. X. Tian, M. L. Yang, Y. B. Fu, J. Ying, and X. L. Wang (2019). Inorg. Chem.58, 4190.CrossRefPubMedGoogle Scholar
  22. 22.
    X. Li, X. Y. Yang, J. Q. Sha, T. Han, C. J. Du, Y. J. Sun, and Y. Q. Lan (2019). ACS Appl. Mater. Interfaces.11, 16896.CrossRefPubMedGoogle Scholar
  23. 23.
    X. Li, L. Sun, X. Yang, K. Zhou, G. Zhang, Z. Tong, and J. Sha (2019). Analyst.144, 3347.CrossRefPubMedGoogle Scholar
  24. 24.
    J. Q. Sha, X. Y. Yang, Y. Chen, P. P. Zhu, Y. F. Song, and J. Jiang (2018). ACS Appl. Mater. Interfaces.10, 16660.CrossRefPubMedGoogle Scholar
  25. 25.
    L. Zhang, S. B. Li, C. J. Gómez-García, H. Y. Ma, C. J. Zhang, H. J. Pang, and B. N. Li (2018). ACS Appl. Mater. Interfaces.1037, 31498.CrossRefGoogle Scholar
  26. 26.
    X. Yang, P. Zhu, J. Ren, Y. Chen, X. Li, J. Sha, and J. Jiang (2019). Chem. Commun.55, 1201.CrossRefGoogle Scholar
  27. 27.
    D. F. Chai, C. J. Gómez-García, B. N. Li, H. J. Pang, H. Y. Ma, X. M. Wang, and L. C. Tan (2019). Chem. Eng. J.373, 587.CrossRefGoogle Scholar
  28. 28.
    S. B. Li, L. Zhang, Y. Q. Lan, K. P. O’Halloran, H. Y. Ma, and H. J. Pang (2018). Chem. Commun.54, 1964.CrossRefGoogle Scholar
  29. 29.
    T. Inoue, A. Fujishima, S. Konishi, and K. Honda (1979). Nature.277, 637.CrossRefGoogle Scholar
  30. 30.
    A. Fujishima and K. Honda (1972). Nature238, 37.CrossRefGoogle Scholar
  31. 31.
    C. Gao, J. Wang, H. Xu, and Y. Xiong (2017). Chem. Soc. Rev.46, 2799.CrossRefPubMedGoogle Scholar
  32. 32.
    A. Tian, Y. Tian, Y. Ning, X. Hou, H. Ni, X. Ji, and J. Ying (2016). Dalton Trans.45, 13925.CrossRefPubMedGoogle Scholar
  33. 33.
    B. Liu, J. Yang, G. C. Yang, and J. F. Ma (2012). Inorg. Chem.52, 84.CrossRefPubMedGoogle Scholar
  34. 34.
    P. P. Zhu, L. J. Sun, N. Sheng, J. Q. Sha, G. D. Liu, L. Yu, H. B. Qiu, and S. X. Li (2016). Cryst. Growth Des.16, 3215.CrossRefGoogle Scholar
  35. 35.
    X. X. Qi, J. H. Lv, and K. Yu (2016). RSC Adv.6, 72544.CrossRefGoogle Scholar
  36. 36.
    J. Sha, X. Yang, J. Li, L. Sun, S. Li, and N. Sheng (2017). J. Clust. Sci.28, 869.CrossRefGoogle Scholar
  37. 37.
    Z. J. Liu, S. Yao, Z. M. Zhang, and E. B. Wang (2013). RSC Adv.3, 20829.CrossRefGoogle Scholar
  38. 38.
    X. Xu, X. Gao, T. Lu, X. Liu, and X. Wang (2015). J. Mater. Chem. A3, 198.CrossRefGoogle Scholar
  39. 39.
    X. Xu, X. Gao, Z. Cui, X. Liu, and X. Zhang (2014). Dalton Trans.43, 13424.CrossRefPubMedGoogle Scholar
  40. 40.
    X. D. Xi, G. Wang, B. F. Liu, and S. Dong (1995). Electrochim. Acta.40, 1025.CrossRefGoogle Scholar
  41. 41.
    P. P. Zhu, N. Sheng, M. T. Li, J. S. Li, G. D. Liu, X. Y. Yang, J. Q. Sha, M. L. Zhu, and J. Z. Jiang (2017). J. Mater. Chem. A5, 17920.CrossRefGoogle Scholar
  42. 42.
    Z. Han, Y. Zhao, J. Peng, Y. Feng, J. Yin, and Q. Liu (2005). Electroanalysis17, 1097.CrossRefGoogle Scholar
  43. 43.
    G. M. Sheldrick Program for Structure Refinement (University of Göttingen, Germany, 1997).Google Scholar
  44. 44.
    H. T. Evans Jr. and M. T. Pope (1984). Inorg. Chem.23, 501.CrossRefGoogle Scholar
  45. 45.
    Y. Jiao, G. Chen, D. Chen, J. Pei, and Y. Hu (2017). J. Mater. Chem. A5, 23744.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Institute of Applied InsectJiamusi UniversityJiamusiPeople’s Republic of China

Personalised recommendations