Advertisement

Photobiosynthesis of Silver Nanoparticle Using Extract of Aspergillus flavus CR500: Its Characterization, Antifungal Activity and Mechanism Against Sclerotium rolfsii and Rhizoctonia solani

  • Deepa Kanaujiya
  • Vinay Kumar
  • S. K. DwivediEmail author
  • Ganesh Prasad
Original Paper
  • 26 Downloads

Abstract

Newly biosynthesized metallic nanoparticle with antimicrobial characteristic attracted its demand in the field of disease management. The present study deals with the synthesis of silver nanoparticle using the extract Aspergillus flavus CR500 under the presence of sunlight. The characterization via scanning and transmission electron microscope revealed their size distribution ranges from 60 to 130 nm with a high content of Ag, confirmed by energy dispersive X-ray spectroscopic analysis. X-ray diffraction and Fourier transform infrared analysis exposed the crystalline nature and active functional group availability on silver nanoparticle (AgNPs). Photobiosynthesized AgNPs have high antimicrobial property and completely inhibited the growth of plant pathogenic fungi Rhizoctonia solani GPB and Sclerotium rolfsii at the concentration of 150 and 300 µg/L respectively. AgNPs exposure increases the lipid peroxidation (via reactive oxygen species production) in R. solani and S. rolfsii, might be a primary cause of AgNPs toxicity to fungal cell. However, fungal cell responded to oxidative stress caused by AgNPs by increasing the catalase and peroxidase activity. In order to assess the AgNPs applicability in seed protection and its impact on germination, growth and development of the crop, Cicer arietinum and Vigna radiata seeds were used for growth and germination assay under AgNPs exposure.

Keywords

Nanoparticle Shape and size of AgNPs, Antifungal mechanism Oxidative stress Antioxidants 

Notes

Acknowledgements

The authors are thankful to the Head of the Department of Environmental Science, BBAU, Lucknow, India for providing Laboratory Facility. The authors are also thankful to National Centre for Microbial Resource (NCMR), Pune, India for providing Gene Sequencing Facility, the Director, USIC, BBAU, Lucknow for SEM and FTIR analysis and the support provided by Jiwaji University, Gwalior (M. P.) for XRD and TEM analysis. Two of us (Vinay Kumar and Ganesh Prasad) are grateful to UGC, New Delhi, India for providing fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Mishra and H. B. Singh (2015). Appl. Microbiol. Biotechnol. 99, 1097–1107.PubMedCrossRefGoogle Scholar
  2. 2.
    S. D. Gupta, A. Agarwal, and S. Pradhan (2018). Ecotoxicol. Environ. Saf. 161, 624–633.PubMedCrossRefGoogle Scholar
  3. 3.
    F. Wang, Y. Hu, C. Guo, W. Huang, and C.-Z. Liu (2012). Bioresour. Technol. 110, 120–124.PubMedCrossRefGoogle Scholar
  4. 4.
    E. O. M. Ali, N. A. Shakil, V. S. Rana, D. J. Sarkar, S. Majumder, P. Kaushik, B. B. Singh, and J. Kumar (2017). Ind. Crops Prod. 108, 379–387.CrossRefGoogle Scholar
  5. 5.
    F. N. Spagnoletti, C. Spedalieri, F. Kronberg, and R. Giacometti (2019). J. Environ. Manage. 231, 457–466.PubMedCrossRefGoogle Scholar
  6. 6.
    A. Segorbe, E. D. Pietro, D. Pérez-Nadales, and D. Turrà (2017). Mol. Plant Pathol. 18, 912–924.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    F. E. Hartmann, A. Sánchez-Vallet, B. A. McDonald, and D. Croll (2017). ISME J. 11, 1189–1204.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Y. Wang, P. Westerhoff, and K. D. Hristovski (2012). J. Hazard. Mater. 201, 16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    A. U. Khan, N. M. M. Khan, M. H. Cho, and M. M. Khan (2018). Bioprocess Biosyst. Eng. 41, 1–20.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    S. Chowdhury, A. Basu, and S. Kundu (2014). Nanoscale Res. Lett. 9, (1), 365.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    S. Radhakrishnan, D. B. Munuswamy, Y. Devarajan, and A. Mahalingam (2018). Energy Sour. A Recov. Util. Environ. Effects 40, (20), 2485–2493.CrossRefGoogle Scholar
  12. 12.
    Z. Huang, K. He, Z. Song, G. Zeng, A. Chen, L. Yuan, H. Li, L. Hu, Z. Guo, and G. Chen (2018). Chemosphere 211, 573–583.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol. 5, (5), 1.CrossRefGoogle Scholar
  14. 14.
    A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, D. Hassan, and M. Maaza (2018). Artif. Cells Nanomed. Biotechnol. 46, (4), 838–852.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    N. Jain, A. Bhargava, S. Majumdar, J. Tarafdar, and J. Panwar (2011). Nanoscale 3, 635–641.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    N. Durán, R. Cuevas, L. Cordi, O. Rubilar, and M. C. Diez (2014). Springer Plus 3, (1), 645.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    S. Prabhu and E. K. Poulose (2012). Int. Nano Lett. 2, 1–10.CrossRefGoogle Scholar
  18. 18.
    F. M. Christensen, H. J. Johnston, V. Stone, R. J. Aitken, S. Hankin, S. Peters, and K. Aschberger (2010). Nanotoxicology 4, 284–295.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    A. Chen, G. Zeng, G. Chen, L. Liu, C. Shang, X. Hu, L. Lu, M. Chen, Y. Zhou, and Q. Zhang (2014). Process Biochem. 49, (4), 589–598.CrossRefGoogle Scholar
  20. 20.
    J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang, J. Yi, and D. Y. Ryu (2010). Aquat. Toxicol. 100, (2), 151–159.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar (2009). Toxicol. Appl. Pharmacol. 236, 310–318.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    A. Oukarroum, S. Bras, F. Perreault, and R. Popovic (2012). Ecotoxicol. Environ. Saf. 78, 80–85.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    H. S. Jiang, X. N. Qiu, G. B. Li, W. Li, and L. Y. Yin (2014). Environ. Toxicol. Chem. 33, (6), 1398–1405.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
  25. 25.
    M. G. Babu and P. Gunasekaran (2009). Colloids Surf. B 74, (1), 191–195.CrossRefGoogle Scholar
  26. 26.
    G. Prasad and S. K. Dwivedi (2017). EJBPS 4, (7), 478–481.Google Scholar
  27. 27.
    J. Sambrook, E. F. Fritsch, and T. Maniatis Molecular Cloning a laboratory manual (Cold Spring Harbor Laboratory Press, New York, 1989).Google Scholar
  28. 28.
    J. H. White, A. Wise, M. J. Main, A. Green, N. J. Frasae, G. H. Disney, A. A. Barnes, P. Emosan, S. M. Foord, and S. H. Marshall (1998). Nature 396, 679–682.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    G. M. Boratyn, C. Camacho, P. S. Cooper, G. Coulouris, A. Fong, N. Ma, T. L. Madden, W. T. Matten, S. D. McGinnis, Y. Merezhuk, Y. Raytselis, E. W. Sayers, T. Tao, J. Ye, and I. Zaretskaya (2013). Nucleic Acids Res. 41, W29–W33.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura (2018). Mol. Biol. Evol. 35, 1547–1549.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    F. Q. Zhang, Y. S. Wang, Z. P. Lou, and J. D. Dong (2007). Chemosphere 67, (1), 44–50.PubMedCrossRefGoogle Scholar
  32. 32.
    J. Xu (2010). Plant Physiol. 154, 1319–1334.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Z. J. Zhu, G. Wei, J. Li, Q. O. Qian, and J. Q. Yu (2004). Plant Sci. 167, 527–533.CrossRefGoogle Scholar
  34. 34.
    M. Guilger, T. Pasquoto-Stigliani, N. Bilesky-Jose, R. Grillo, P. C. Abhilash, L. F. Fraceto, and R. de Lima (2017). Sci. Rep. 7, 44421.  https://doi.org/10.1038/srep44421.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    A. Kannan and R. K. Upreti (2008). J. Hazard. Mater. 153, 609–615.PubMedCrossRefGoogle Scholar
  36. 36.
    P. L. Gratão, C. C. Monteiro, R. F. Carvalho, T. Tezotto, F. A. Piotto, L. E. Peres, and R. A. Azevedo (2012). Plant Physiol. Biochem. 56, 79–96.PubMedCrossRefGoogle Scholar
  37. 37.
    D. T. Plummer Introduction to Practical Biochemistry (Tata McGraw Hill Publishing 640 Co. Ltd, London, 1979).Google Scholar
  38. 38.
    D. K. Verma, S. H. Hasan, and R. M. Banik (2016). J. Photochem. Photobiol. B 155, 51–59.PubMedCrossRefGoogle Scholar
  39. 39.
    V. Kumar, D. K. Singh, S. Mohan, and S. H. Hasan (2016). J. Photochem. Photobiol. B 155, 39–50.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    J.-H. Lee, J.-M. Lim, P. Velmurugan, Y.-J. Park, Y.-J. Park, K.-S. Bang, and B.-T. Oh (2016). J. Photochem. Photobiol. B 162, 93–99.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    R. Al-Bahrani, J. Raman, H. Lakshmanan, A. A. Hassan, and V. Sabaratnam (2017). Mater. Lett. 186, 21–25.CrossRefGoogle Scholar
  42. 42.
    V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Mater. Sci. Eng. C 58, 36–43.CrossRefGoogle Scholar
  43. 43.
    A. E. Mohammed, F. F. B. Baz, and J. S. Albrahim (2018). 3 Biotech 8, 72.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    K. P. Bocate, G. F. Reis, P. C. de Souza, A. G. O. Junior, N. Durán, G. Nakazato, and L. A. Panagio (2019). Int. J. Food Microbiol. 291, 79–86.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    V. Kumar, S. Singh, G. Singh, and S. K. Dwivedi (2019). Geomicrobiol. J. 36, (9), 782–791.CrossRefGoogle Scholar
  46. 46.
    S. Neethu, S. J. Midhun, M. A. Sunil, S. Soumya, E. K. Radhakrishnan, and M. Jyothis (2018). J. Photochem. Photobiol. B 180, 175–185.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    A. Saravanakumar, M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang (2017). Artif. Cells Nanomed. Biotechnol. 45, (6), 1165–1171.CrossRefGoogle Scholar
  48. 48.
    S. Basavaraja, S. D. Balaji, A. Lagashetty, A. H. Rajasab, and A. Venkataraman (2008). Mater. Res. Bull. 43, (5), 1164–1170.CrossRefGoogle Scholar
  49. 49.
    M. Wojnicki, T. Tokarski, V. Hessel, K. Fitzner, and M. Luty-Błocho (2019). J. Flow Chem. 9, (1), 1–7.CrossRefGoogle Scholar
  50. 50.
    H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen, and N. Zheng (2016). Nat. Commun. 7, 12809.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    K. Rajaram, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett. 138, 251–254.CrossRefGoogle Scholar
  52. 52.
    K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci. 6, (3), 399–408.CrossRefGoogle Scholar
  53. 53.
    B. Kumar, S. Kumari, L. Cumbal, and A. Debut (2015). Asian Pac. J. Trop. Biomed 5, (3), 192–195.CrossRefGoogle Scholar
  54. 54.
    A. Shafaghat (2015). Synth. React. Inorg. M. 45, (3), 381–387.CrossRefGoogle Scholar
  55. 55.
    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, and Y. K. Kim (2007). Nanomed. Nanotechnol. Biol. Med. 3, (1), 95–101.CrossRefGoogle Scholar
  56. 56.
    M. Khatami, I. Sharifi, M. A. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev. 11, (2), 125–134.CrossRefGoogle Scholar
  57. 57.
    H. J. Park, S. H. Kim, H. J. Kim, and S. H. Choi (2006). Plant Pathol. J. 22, (3), 295–302.CrossRefGoogle Scholar
  58. 58.
    J. S. Min, K. S. Kim, S. W. Kim, J. H. Jung, K. Lamsal, S. B. Kim, M. Y. Jung, and Y. S. Lee (2009). Plant Pathol. J. 25, (4), 376–380.CrossRefGoogle Scholar
  59. 59.
    M. Kumari, V. P. Giri, S. Pandey, M. Kumar, R. Katiyar, C. S. Nautiyal, and A. Mishra (2019). Pestic. Biochem. Phys. 157, 45–52.CrossRefGoogle Scholar
  60. 60.
    J. Xu, Y. Y. Zhu, Q. Ge, Y. L. Li, J. H. Sun, Y. Zhang, and X. J. Liu (2012). New Phytol. 196, (1), 125–138.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    G. Prasad, V. Kumar, and S. K. Dwivedi (2018). Asian J. Biol. Sci. 13, 21–27.CrossRefGoogle Scholar
  62. 62.
    V. Kumar and S. K. Dwivedi (2019). Ecotoxicol. Environ. Saf..  https://doi.org/10.1016/j.ecoenv.2019.109734.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    C. Serra-Wittling, S. Houot, and E. Barriuso (1995). Biol. Fertil. Soils 20, (4), 226–236.CrossRefGoogle Scholar
  64. 64.
    C. D. O. Timoteo, R. Paiva, M. V. Reis, P. I. C. Claro, L. M. Ferraz, J. M. Marconcini, and J. E. de Oliveira (2019). 3 Biotech 9, 145.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deepa Kanaujiya
    • 1
  • Vinay Kumar
    • 1
  • S. K. Dwivedi
    • 1
    Email author
  • Ganesh Prasad
    • 1
  1. 1.Department of Environmental ScienceBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations