Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals

  • Anthonisamy Anthoni Jenifer
  • Balasubramaniam Malaikozhundan
  • Sekar Vijayakumar
  • Mahalingam Anjugam
  • Arokiadas Iswarya
  • Baskaralingam VaseeharanEmail author
Original Paper


In this study, silver nanoparticle was green synthesized using the leaf extract of Solanum nigrum (Sn-AgNPs) and bio-physically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HR-TEM), Zeta potential analysis and Energy dispersive X-ray (EDX) analysis. The ecotoxicity of silver nanoparticle (Sn-AgNPs) were tested against both invertebrate (Ceriodaphnia cornuta and Paramecium sp.) and vertebrate aquatic animal models (Guppy fish, Poecilia reticulata) in comparison with bare silver nitrate. Sn-AgNPs were observed to be less toxic than ionic silver (silver nitrate). The ecotoxicity levels of Sn-AgNPs were found to be varied between tested organisms. Sn-AgNPs caused 100% mortality of freshwater crustacean, C. cornuta at 50 µg mL−1. At concentration below 50 µg mL−1 (10–30 µg mL−1), abnormality in the swimming behavior of C. cornuta was noticed. The ingestion and accumulation of Sn-AgNPs in the intestine of C. cornuta neonates were visualized under light and confocal laser scanning microscopic images. The ecotoxicity of Sn-AgNPs to the freshwater protozoan ciliate, Paramecium sp. showed that 30 µg mL−1 were lethal and produced 100% mortality at the same concentration. The study concludes that Sn-AgNPs was less toxic to both invertebrate and vertebrate models compared to ionic silver nitrate.


Green synthesis Silver nanoparticles Nano manufacturing Ecotoxicity Aquatic entry Bioaccumulation 



The authors thank the RUSA phase 2.0 grant [Ref-24-51-2014-U policy] TN Multi-Gen. Department of Education, Government of India. The corresponding author Dr. B. Vaseeharan thanks the Department of Biotechnology (DBT), New Delhi, India, for financial assistance under the Project Grants Code: BT/PR7903/AAQ/3/638/2013. The third author S. Vijayakumar (SRF) thanks the DST, New Delhi, India for financial support under INSPIRE programme (INSPIRE Fellow-IF140145). The authors gratefully acknowledge the University Scientific Instrumentation Centre (USIC) for providing Confocal laser scanning microscopy, XRD and FTIR instrumental facilities to this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1704_MOESM1_ESM.docx (353 kb)
Supplementary material 1 (DOCX 352 kb)


  1. 1.
    J. Zhao and V. Castranova (2011). J. Toxicol. Environ. Health B 14, 593–632.CrossRefGoogle Scholar
  2. 2.
    K. Aschberger, C. Micheletti, B. Sokull-Kluttgen, and F. M. Christensen (2011). Environ. Int. 37, 1143–1156.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    C. Blaise, F. Gagne, and J. F. Ferard (2008). Environ. Toxicol. 23, 591–598.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    M. Farre, K. Gajda-Schrantz, L. Kantiani, and D. Barcelo (2009). Anal. Bioanal. Chem. 393, 81–95.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    A. Bermejo-Nogales, M. Fernández, M. L. Fernández-Cruz, and J. M. Navas (2016). Comp. Biochem. Physiol. C. 190, 54–65.Google Scholar
  6. 6.
    F. Gottschalk, T. Y. Sun, and B. Nowack (2013). Environ. Poll. 181, 287–300.CrossRefGoogle Scholar
  7. 7.
    K. L. Garner, S. Suh, H. S. Lenihan, and A. A. Keller (2015). Environ. Sci. Technol. 49, 5753–5759.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    A. H. Sayed and H. A. M. Soliman (2017). Mutat. Res. Gen. Tox. En. 822, 34–40.CrossRefGoogle Scholar
  9. 9.
    K. Chaloupka, Y. Malam, and A. M. Seifalian (2010). Trends. Biotechnol. 28, 580–588.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    T. M. Benn and P. Westerhoff (2008). Environ. Sci. Technol. 42, 4133–4139.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, and R. Watkins (2008). Food. Addit. Contam. 25, 241–258.CrossRefGoogle Scholar
  12. 12.
    L. Geranio, M. Heuberger, and B. Nowack (2009). Environ. Sci. Technol. 43, 8113–8118.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, and M. Burkhardt (2010). Environ. Pollut. 158, 2900–2905.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    A. A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). J. Nanopart. Res. 15, 1–17.CrossRefGoogle Scholar
  15. 15.
    T.F. Rozan, K.S. Hunter and G. Benoit (1995). Proceedings of the 3rd Argentum International Conference on the Transport, Fate and Effects of Silver in the Environment, Washington, DC, USA, August 6–9, pp. 181–184.Google Scholar
  16. 16.
    L. S. Wen, P. H. Santschi, G. A. Gill, C. L. Paternostro, and R. D. Lehman (1997). Environ. Sci. Technol. 31, 723–731.CrossRefGoogle Scholar
  17. 17.
    A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat (2010). Environ. Sci. Technol. 44, 1260–1266.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    M. Tejamaya, I. Römer, R. C. Merrifield, and J. R. Lead (2012). Environ Sci Technol. 46, 7011–7017.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant, and J. R. Lead (2011). J. Chromatogr. A 1218, 4226–4233.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    S. A. Cumberland and J. R. Lead (2009). J. Chromatogr. A 1216, 9099–9105.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    M. Baalousha, Y. Nur, I. Römer, M. Tejamaya, and J. R. Lead (2013). Sci. Total Environ. 454, 119–131.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    M. Ahamed, M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager, and Y. Hong (2008). Toxicol Appl. Pharmacol. 233, 404–410.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    S. Arora, J. Jain, J. Rajwade, and K. Paknikar (2009). Toxicol. Appl. Pharmacol. 236, 310–318.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    P. AshaRani, M. P. Hande, and S. Valiyaveettil (2009). BMC Cell Biol. 10, 65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    B. K. Gaiser, A. Biswas, P. Rosenkranz, M. A. Jepson, J. R. Lead, V. Stone, C. R. Tyler, and T. F. Fernandes (2011). J. Environ. Monit. 13, 1227–1235.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    J. Y. Roh, S. J. Sim, K. Yi, K. Park, K. H. Chung, D. Y. Ryu, and J. Choi (2009). Environ. Sci. Technol. 43, 3933–3940.CrossRefGoogle Scholar
  27. 27.
    OECD, (1984). 2–5.Google Scholar
  28. 28.
    EPA (2002).Ed Agency U S E P.Google Scholar
  29. 29.
    J. Bernal and S. Ruvalcaba (1996). Toxicology 108, 165–173.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    M. Ates, V. Demir, R. Adiguzel and Z. Arslan (2013).J. Nanomater. 1–6.Google Scholar
  31. 31.
    Z. A. Zakaria, H. K. Gopalan, and H. Zainal (2006). Yakugaku Zasshi. 126, 1171–1178.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, R. Sudhakaran, N. Gobi, and G. Shanthini (2016). Biocatal. Agric. Biotechnol. 8, 189–196.CrossRefGoogle Scholar
  33. 33.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. Rajamohamed Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog. 104, 268–277.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    USEPA 2002.5th Edn. EPA-821-R-02-012.Google Scholar
  35. 35.
    S. Vijayakumar, B. Malaikozhundan, N. Gobi, B. Vaseeharan, and C. Murthy (2016). Limnologica. 61, 44–51.CrossRefGoogle Scholar
  36. 36.
    H. W. Bischoff and H. C. Bold (1983). Univ. Texas Publ. 6318, 96.Google Scholar
  37. 37.
    H. Hosoya, K. Kimura, S. Matsuda, M. Kitamura, T. Takahashi, and T. Kosaka (1995). Zool. Sci. 12, 807–810.CrossRefGoogle Scholar
  38. 38.
    R. M. Shahjahan, M. J. Ahmed, R. A. Begunand, and M. A. Rashid (2013). J. Asiat. Soc. Bangladesh Sci. 39, 259–267.CrossRefGoogle Scholar
  39. 39.
    N. S. Taylor, R. J. Weber, A. D. Southam, T. G. Payne, O. Hrydziuszko, T. N. Arvanitis, and M. R. Viant (2009). Metabolomics. 5, 44–58.CrossRefGoogle Scholar
  40. 40.
    M. Yilmaz, A. Gül, and E. Karaköse (2004). Chemosphere. 56, 375–380.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    W. Fan, Q. Li, X. Yang, and L. Zhang (2013). PLOS ONE. 8, 1–6.Google Scholar
  42. 42.
    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 373–378.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    S. Lokina, A. Stephen, V. Kaviyarasan, C. Arulvasu, and V. Narayanan (2014). Eur. J. Med. Chem. 76, 256–263.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    D. S. Kumar, K. V. Sharathnath, P. Yogeshwaran, A. Harani, K. Sudhakar, P. Sudha, and B. David (2010). Int. J. Pharm. Sci. Res. 1, 95–100.Google Scholar
  45. 45.
    G. Leela Prakash, J. C. Rose, B. M. Gowtham, J. P. Krishna, and A. S. Prasad (2011). Pharmacophore 2, 244–252.Google Scholar
  46. 46.
    C. A. Annapoorani (2013). Int. J. Pharm. Res. Dev. 5, 01–06.Google Scholar
  47. 47.
    B. Ajitha, Y.A.K. Reddy and P.S. Reddy, J Photochem Photobiol B. 146, 1–9.Google Scholar
  48. 48.
    H. L. Su, C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, and J. J. Lin (2009). Biomaterials. 30, 5979–5987.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead (2011). Environ. Int. 37, 517–531.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    E. Oberdorster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch (2006). Carbon. 44, 1112–1120.CrossRefGoogle Scholar
  51. 51.
    K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, and S. J. Klainey (2013). Environ. Toxicol. Chem. 32, 2356–2364.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, and A. Kahru (2008). Chemosphere. 71, 1308–1316.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru (2010). Environ. Pollut. 158, 41–47.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    R. J. Griffitt, J. Luo, J. Gao, J. C. Bonzongo, and D. S. Barber (2008). Environ. Toxicol. Chem. 27, 1972–1978.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    K. Bilberg, K. B. Doving, K. Beedholm, and E. Baatrup (2011). Aquat. Toxicol. 104, 145–152.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    L. K. Adams, D. Y. Lyon, A. McIntosh, and P. J. J. Alvarez (2006). Water Res. 40, 3527–3532.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    RH. Peters and R. De Bernardi (1987). Daphnia, Consiglionazionaledellerecherche´, Institutoitaliano di, idrobiologia, VerbaniaPallanza.Google Scholar
  58. 58.
    M. C. Artal, R. D. Holtz, F. Kummrow, O. L. Alves, and G. A. Umbuzeiro (2013). Environ. Toxicol. Chem. 32, 908–912.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    K. P. Tavares, A. Caloto-Oliveira, D. S. Vicentini, S. P. Melegari, W. G. Matias, S. Barbosa, and F. Kummrow (2014). Ecotoxicol. Environ. Contam. 9, 43–50.Google Scholar
  60. 60.
    N. Strigul, L. Vaccari, C. Galdun, M. Wazne, X. Liu, C. Christodoulatos, and K. Jasinkiewicz (2009). Desalination 248, 771–782.CrossRefGoogle Scholar
  61. 61.
    M. Morange (2006). J Biosci. 31, 27–30.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    L. Kvitek, M. Vanickova, A. Panacek, J. Soukupova, M. Dittrich, E. Valentova, R. Prucek, M. Bancirova, D. Milde, and R. Zboril (2009). J. Phys. Chem. C 113, 4296–4300.CrossRefGoogle Scholar
  63. 63.
    J. García Alonso, F. R. Khan, S. K. Misra, M. Turmaine, B. D. Smith, P. S. Rainbow, S. N. Luoma, and E. Valsami-Jones (2011). Environ. Sci. Technol. 45, 4630–4636.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    A. V. Nebeker, C. K. McAuliffe, R. Mshar, and D. G. Stevens (1983). Environ. Toxicol. Chem. 2, (9), 5–104.Google Scholar
  65. 65.
    A. Bianchini, M. Grosell, S. M. Gregory, and C. M. Wood (2002). Environ. Sci. Technol. 36, 1763–1766.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    T. P. Morgan and C. M. Wood (2004). Environ. Toxicol. Chem. 23, 1261–1267.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    J. A. Kovriznych, R. Sotníkova, D. Zeljenkova, E. Rollerova, E. Szabova, and S. Wimmerova (2013). Interdiscip. Toxicol. 6, 67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    B. C. Lee, K. T. Kim, J. G. Cho, J. W. Lee, T. K. Ryu, J. H. Yoon, S. H. Lee, C. N. Duong, I. C. Eon, P. J. Kim, and K. H. Choi (2012). Mol. Cell. Toxicol. 8, 357–366.CrossRefGoogle Scholar
  69. 69.
    K. Bilberg, M.B. Hovgaard, F. Besenbacher and E. Baatrup (2012). J. Toxicol. 1–9.Google Scholar
  70. 70.
    P. V. Asharani, Y. I. Lian Wu, Z. Gong, and S. Valiyaveettil (2008). Nanotechnology 19, 255102.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    C. Fernandes, A. Fontaínhas-Fernandes, E. Rocha, and M. A. Salgado (2008). Environ. Monit. Assess. 145, 315–322.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    G. Federacy, B. J. Shaw, and R. D. Handy (2007). Aquat. Toxicol. 84, 415–430.CrossRefGoogle Scholar
  73. 73.
    Y. Wu and Q. Zhou (2013). Environ. Toxicol. Chem. 32, 165–173.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. H. N. Xu (2007). ACS Nano 1, 133–143.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Y. Min-Kyeong and K. Misook (2008). Bull. Korean Chem. Soc. 29, 1179–1184.CrossRefGoogle Scholar
  76. 76.
    R. J. Griffitt, K. N. D. Hyndman, N. D. Denslow, and D. S. Barber (2009). Toxicol. Sci. 107, 404–415.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    A. H. Ringwood, M. McCarthy, T. C. Bates, and D. L. Carroll (2010). Mar. Environ. Res. 1, 49–51.CrossRefGoogle Scholar
  78. 78.
    A.A. Hadi and S.F. Alwan, Int. J. Pharm. Life Sci. 3, 2071–2081.Google Scholar
  79. 79.
    J. Pan and W. Wang (2004). Environ. Pollut. 129, 467–477.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    C. M. Zhao and W. X. Wang (2010). Environ. Sci. Technol. 44, 7699–7704.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anthonisamy Anthoni Jenifer
    • 1
  • Balasubramaniam Malaikozhundan
    • 1
  • Sekar Vijayakumar
    • 1
  • Mahalingam Anjugam
    • 1
  • Arokiadas Iswarya
    • 1
  • Baskaralingam Vaseeharan
    • 1
    Email author
  1. 1.Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia

Personalised recommendations