Advertisement

A Novel Ag(I)-Containing Polyoxometalate-Based MOF for Visible-Light-Driven Water Oxidation

  • Chaojie Cui
  • Dongying ShiEmail author
  • Zhouhuan Nie
  • Lubin Song
  • Ahao Ren
  • Chunsen LiuEmail author
Original Paper
  • 25 Downloads

Abstract

A novel 3D Ag(I)-containing polyoxometalate-based MOF of H17[Ag9(AgH8W11O44)2(BPY)9]·2.5H2O (WAgBPY; BPY = 4,4′-bipyridine) has been solvothermally synthesized, and structurally characterized by elemental analyses, IR spectrum, UV–Vis spectrum, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. WAgBPY exhibits highly efficient photocatalytic O2 production (964 μmol g−1 in the first 10 min) under visible-light irradiation. More interestingly, transient photocurrent experiments confirm the charge separation and transfer process for the possible mechanism in the photocatalytic reaction. The high photocatalytic efficiency, high stability and good recyclability of the catalyst WAgBPY demonstrates that Ag(I)-containing polyoxometalate units are crucial factor for water oxidation over heterogeneous systems. The successful synthesis of WAgBPY not only enriches polyoxometalate-based hybrid materials, but also represents the advantages of the Ag(I)-containing complexes for the potential applications such as heterogeneous photocatalysis and so on.

Keywords

Polyoxometalate Silver Metal–organic framework Photocatalysis Water oxidation 

Notes

Acknowledgments

We are grateful to the support from the National Natural Science Foundation of China (21701147), State Key Laboratory of Fine Chemicals (KF1701), Open Research Fund of Henan Key Laboratory of Polyoxometalate Chemistry (HNPOMKF1604), and the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (2016BSJJ026).

Supplementary material

10876_2019_1703_MOESM1_ESM.doc (15.4 mb)
Supplementary material 1 (DOC 15779 kb)

References

  1. 1.
    X. Du, J. Zhao, J. Mi, Y. Ding, P. Zhou, B. Ma, J. Zhao, and J. Song (2015). Nano Energy 16, 247–255.CrossRefGoogle Scholar
  2. 2.
    X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. S. Mao (2012). Chem. Soc. Rev. 41, 7909–7937.CrossRefGoogle Scholar
  3. 3.
    W. Rüttinger and G. C. Dismukes (1997). Chem. Rev. 97, 1–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Y. Liu, R. Xiang, X. Du, Y. Ding, and B. Ma (2014). Chem. Commun. 50, 12779–12782.CrossRefGoogle Scholar
  5. 5.
    N. V. Izarova, M. T. Pope, and U. Kortz (2012). Angew. Chem. Int. Ed. 51, 9492–9510.CrossRefGoogle Scholar
  6. 6.
    X. Du, Y. Ding, F. Song, B. Ma, J. Zhao, and J. Song (2015). Chem. Commun. 51, 13925–13928.CrossRefGoogle Scholar
  7. 7.
    Z. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, and T. Lian (2011). J. Am. Chem. Soc. 133, 2068–2071.CrossRefPubMedGoogle Scholar
  8. 8.
    F. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu, and J. Song (2013). Energy Environ. Sci. 6, 1170–1184.CrossRefGoogle Scholar
  9. 9.
    M. Ranocchiari and J. A. Van Bokhoven (2011). Phys. Chem. Chem. Phys. 13, 6388–6396.CrossRefPubMedGoogle Scholar
  10. 10.
    A. Dhakshinamoorthy, M. Alvaro, and H. Garcia (2012). Chem. Commun. 48, 11275–11288.CrossRefGoogle Scholar
  11. 11.
    Y. Xu, B. Li, S. Zheng, P. Wu, J. Zhan, H. Xue, Q. Xu, and H. Pang (2018). J. Mater. Chem. A 6, 22070–22076.CrossRefGoogle Scholar
  12. 12.
    A. Corma, H. García, and F. X. L. i Xamena (2010). Chem. Rev. 110, 4606–4655.CrossRefPubMedGoogle Scholar
  13. 13.
    C. Wang, J.-L. Wang, and W. Lin (2012). J. Am. Chem. Soc. 134, 19895–19908.CrossRefPubMedGoogle Scholar
  14. 14.
    D. Shi, C. He, B. Qi, C. Chen, J. Niu, and C. Duan (2015). Chem. Sci. 6, 1035–1042.CrossRefPubMedGoogle Scholar
  15. 15.
    D. Shi, C. He, W. Sun, Z. Ming, C. Meng, and C. Duan (2016). Chem. Commun. 52, 4714–4717.CrossRefGoogle Scholar
  16. 16.
    S. R. Bajpe, C. E. A. Kirschhock, A. Aerts, E. Breynaert, G. Absillis, T. N. Parac-Vogt, L. Giebeler, and J. A. Martens (2010). Chem. Eur. J. 16, 3926–3932.CrossRefPubMedGoogle Scholar
  17. 17.
    S. R. Bajpe, E. Breynaert, D. Mustafa, M. Jobbágy, A. Maes, J. A. Martens, and C. E. A. Kirschhock (2011). J. Mater. Chem. 21, 9768–9771.CrossRefGoogle Scholar
  18. 18.
    G. Paille, M. Gomez-Mingot, C. Roch-Marchal, B. Lassalle-Kaiser, P. Mialane, M. Fontecave, C. Mellot-Draznieks, and A. Dolbecq (2018). J. Am. Chem. Soc. 140, 3613–3618.CrossRefPubMedGoogle Scholar
  19. 19.
    D. Shi, R. Zheng, C.-S. Liu, D.-M. Chen, J. Zhao, and M. Du (2019). Inorg. Chem. 58, 7229–7235.CrossRefPubMedGoogle Scholar
  20. 20.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339–341.CrossRefGoogle Scholar
  21. 21.
    D. Shi, C.-J. Cui, M. Hu, A.-H. Ren, L.-B. Song, C.-S. Liu, and M. Du (2019). J. Mater. Chem. C 7, 10211–10217.CrossRefGoogle Scholar
  22. 22.
    D.-Y. Shi, J.-W. Zhao, L.-J. Chen, P.-T. Ma, J.-P. Wang, and J.-Y. Niu (2012). CrystEngComm 14, 3108–3119.CrossRefGoogle Scholar
  23. 23.
    J. Zhao, D. Shi, L. Chen, X. Cai, Z. Wang, P. Ma, J. Wang, and J. Niu (2012). CrystEngComm 14, 2797–2806.CrossRefGoogle Scholar
  24. 24.
    D. Shi, R. Zheng, M.-J. Sun, X. Cao, C.-X. Sun, C.-J. Cui, C.-S. Liu, J. Zhao, and M. Du (2017). Angew. Chem. Int. Ed. 56, 14637–14641.CrossRefGoogle Scholar
  25. 25.
    D. Shi, L. Zeng, Z. Ming, C. He, C. Meng, and C. Duan (2016). RSC Adv. 6, 51936–51940.CrossRefGoogle Scholar
  26. 26.
    C. Kong, S. Min, and G. Lu (2014). ACS Catal. 4, 2763–2769.CrossRefGoogle Scholar
  27. 27.
    X.-Y. Dong, M. Zhang, R.-B. Pei, Q. Wang, D.-H. Wei, S.-Q. Zang, Y.-T. Fan, and T. C. W. Mak (2016). Angew. Chem. Int. Ed. 55, 2073–2077.CrossRefGoogle Scholar
  28. 28.
    Y. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian, and C. L. Hill (2009). J. Am. Chem. Soc. 131, 7522–7523.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.Henan Key Laboratory of Polyoxometalate ChemistryHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations