Spectrum and Physical Properties of C70 Under the External Electric Field

  • Qianjin Xiang
  • Yuzhu LiuEmail author
  • Xiangyun Zhang
  • Yiqun Duan
  • Abulimiti Bumaliya
  • Mei XiangEmail author
Original Paper


Fullerene C70 has a broad application prospect. It is of great significance for investigating the properties of fullerene C70 under the external electric field. The dipole moment, energy gap and infrared spectrum of fullerene C70 molecule under external electric field (0–0.040 atomic units) are studied with density functional theory at B3PW91/3-21G level. The dipole moment increases almost linearly from 0.005 to 65.005 Debye and the energy gap decreases continuously. The effect of external electric field on the infrared spectrum is great and it can be found that certain vibrational mode become active due to the symmetry reduction due to the external electric field. Meanwhile, the ultraviolet–visible absorption spectra, the excitation wavelength, the excitation energy, and oscillator strength of first fourteen excited states of fullerene C70 under the external electric field are also studied with the time-dependent density functional theory at B3PW91/3-21G level. It is found that the absorption peak of fullerene C70 occurs red shift from 504.78 to 736.39 nm. The excitation energy decreases rapidly and the excitation wavelength increases a lot with the external electric field. The results can offer an important reference to use external electric field to tune the properties of fullerene C70.


Fullerene C70 External electric field IR spectrum Tunnel ionization Excited states 



This project is supported by the National Natural Science Foundation of China (Grant Nos. U1932149, 21763207), six talent peaks project in Jiangsu Province (Grant No. 2015-JNHB-011), and Natural Science Foundation of Jiangsu Province of China (No. BK20191395), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (No. 18KJA140002) and College Students’ Practice Innovation Training Program of Nuist (Grant No. 201910300033Z).


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, (6042), 162–163.CrossRefGoogle Scholar
  2. 2.
    D. R. Mckenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo (1992). Nature 355, (6361), 622–624.CrossRefGoogle Scholar
  3. 3.
    R. C. Haddon, et al. (1991). Nature 350, (6316), 320–322.CrossRefGoogle Scholar
  4. 4.
    Y. Wang (1992). Nature 356, (6370), 585–587.CrossRefGoogle Scholar
  5. 5.
    F. Matsukura, D. Chiba, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, and H. Ohno (2002). Physica E 12, 351–355.CrossRefGoogle Scholar
  6. 6.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani (2000). Nature 408, (6815), 944–946.CrossRefGoogle Scholar
  7. 7.
    M. A. Roman and S. I. Klokishner (2018). J. Phys. Chem. A 122, (46), 9093–9099.CrossRefGoogle Scholar
  8. 8.
    S. Shaik, D. Mandal, and R. Ramanan (2016). Nat. Chem. 8, (12), 1091–1098.CrossRefGoogle Scholar
  9. 9.
    C. D. Fu, Y. He, and J. Pfaendtner (2019). J. Phys. Chem. A 123, (14), 3080–3089.CrossRefGoogle Scholar
  10. 10.
    M. T. Baei, A. S. Ghasemi, E. T. Lemeski, A. Soltani, and N. Gholami (2016). J. Clust. Sci. 27, (4), 1081–1096.CrossRefGoogle Scholar
  11. 11.
    C. V. Nguyen, H. D. Bui, T. D. Nguyen, and K. D. Pham (2019). Chem. Phys. Lett. 724, 1–7.CrossRefGoogle Scholar
  12. 12.
    S. X. Li, Z. P. Zhang, Z. W. Long, and S. J. Qin (2017). Acta Phys. Sin. 66, (10), 103102.Google Scholar
  13. 13.
    J. X. Ren, B. Liu, X. Xu, L. J. Zhang, Y. Y. Mao, X. Y. Wu, Y. Zhang, L. Jiang, and X. J. Xin (2019). Opt. Express 27, (3), 2732–2746.CrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, et al. GAUSSIAN-09, Revision C.01 (GAUSSIAN Inc., Wallingford, CT, 2010).Google Scholar
  15. 15.
    G. Roth and P. Adelmann (1992). J. De Phys. I 2, (8), 1541–1548.Google Scholar
  16. 16.
    P. Avouris, I. W. Lyo, and P. Molinas-Mata (1995). Chem. Phys. Lett. 240, (5–6), 423–428.CrossRefGoogle Scholar
  17. 17.
    L. Huang, L. Massa, and C. F. Matta (2014). Carbon 76, 310–320.CrossRefGoogle Scholar
  18. 18.
    T. Zuo and A. D. Bandrauk (1995). Phys. Rev. A 52, (4), 2511–2514.CrossRefGoogle Scholar
  19. 19.
    S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk (1995). Phys. Rev. A 52, (4), 2977–2983.CrossRefGoogle Scholar
  20. 20.
    S. Sowlati-Hashjin and C. F. Matta (2013). J. Chem. Phys. 139, (14), 144101.CrossRefGoogle Scholar
  21. 21.
    M. S. Baba, T. S. L. Narasimhan, R. Balasubramanian, and C. K. Mathews (1993). Rapid Commun. Mass Spectrom. 7, (12), 1141–1144.CrossRefGoogle Scholar
  22. 22.
    P. B. Corkum, N. H. Burnett, and F. Brunel (1989). Phys. Rev. Lett. 62, (11), 1259–1262.CrossRefGoogle Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz Quantum Mechanics (Pergamon Press, New York, 1965).Google Scholar
  24. 24.
    D. Bauer and P. Mulser (1999). Phys. Rev. A 59, (1), 569.CrossRefGoogle Scholar
  25. 25.
    D. S. Bethune, G. Meijer, W. C. Tang, et al. (1991). Chem. Phys. Lett. 179, 181–186.CrossRefGoogle Scholar
  26. 26.
    K. Raghavachari and C. M. M. Rohlfing (1991). J. Phys. Chem. 95, (15), 5768–5773.CrossRefGoogle Scholar
  27. 27.
    P. Bowmar, W. Hayes, M. Kurmoo, P. A. Pattenden, M. A. Green, P. Days, and K. Kikuchi (1994). J. Phys. Condens. Matter 6, (17), 3161–3170.CrossRefGoogle Scholar
  28. 28.
    A. V. Tuchin, L. A. Bityutskaya, and E. N. Bormontov (2015). Eur. Phys. J. D 69, (3), 87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and OceanNanjing University of Information Science & TechnologyNanjingPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET)NanjingPeople’s Republic of China
  3. 3.College of Physics and Electronic EngineeringXinjiang Normal UniversityUrumqiPeople’s Republic of China

Personalised recommendations