Synthesis and Characterization of Cerium Oxide Quantum Dots Loaded Biodegradable Dextran Matrix for Effective Pain Management

  • Hua Guo
  • Tao Liu
  • Jie Li
  • Gangquan ChenEmail author
  • Ping JiaEmail author
Original Paper


The essential intention towards this report is the synthesis and characterization of cerium oxide quantum dots (CeO2 QDs) loaded biodegradable dextran matrix (CED) for the effective pain management in biomedical field. The physic-chemical characterization of CeO2 QDs and CED were carried out using FT-IR, UV–Vis, XPS, TG/DTA, XRD and TEM studies. FT-IR analysis and XPS studies designates the purity of CeO2 QDs and CED without expressing any other excessive peaks. XRD pattern of CeO2 QDs represents the cubic phase structure and thermal analysis confirms the loading of dextran in CED by expressing only one exothermic peak. Morphological characterization like TEM analysis reveals that the particles of CeO2 QDs are in less than < 10 nm and uniform distribution of porous network of dextran in CED. The summary of the in vitro drug releasing and cell viability analysis established that synthesized materials were making favorable entrapment with curcumin molecules at physiological pH conditions and release the drug molecules in the intracellular conditions. Exploited CED with the biocompatible, biodegradable property may improve outcomes profound with the pharmaceutical applications.


Dextran CeO2 Quantum dots Pain management 



This study was supported by Handan Science and Technology Bureau Project (No. 1723208068-7).


  1. 1.
    S. Ruhle, M. Shalom, and A. Zaban (2010). Chem. Phys. Chem. 11, 2290.CrossRefGoogle Scholar
  2. 2.
    L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda (2007). Appl. Phys. Lett. 91, 023116.CrossRefGoogle Scholar
  3. 3.
    P. Yuan, C. Fuhong, W. Dan, J. Wang, and J. F. Chen (2018). Ind. Eng. Chem. Res. 57, 1790.CrossRefGoogle Scholar
  4. 4.
    G. Bardajee, Z. Hooshvar, H. Rezanezhad, G. Guerin, and A. C. S. Appl (2012). Mater. Interfaces 4, 3517.CrossRefGoogle Scholar
  5. 5.
    M. Balaji, S. Jegatheeswaran, P. Nithya, P. Boomi, S. Selvam, and M. Sundrarajan (2018). J. Photochem. Photobiol. B Biol. 178, 371.CrossRefGoogle Scholar
  6. 6.
    S. B. Maddinedi, B. K. Mandal, and S. K. Maddili (2017). J. Photochem. Photobiol. B Biol. 167, 236–241.CrossRefGoogle Scholar
  7. 7.
    M. Naessens, A. Cerdobbel, W. Soetaert, and E. J. Vandamme (2005). J. Chem. Technol. Biotechnol. 80, 845.CrossRefGoogle Scholar
  8. 8.
    S. Das, J. M. Dowding, K. E. Klump, and J. F. Ginnis (2013). Nanomedicine 8, 1483.CrossRefGoogle Scholar
  9. 9.
    P. Nithya, M. Balaji, S. Jegatheeswaran, S. Selvam, and M. Sundrarajan (2018). J. Photochem. Photobiol. B Biol. 178, 481.CrossRefGoogle Scholar
  10. 10.
    C. Xu and X. Qu (2014). NPG Asia Mater. 6, 90.CrossRefGoogle Scholar
  11. 11.
    C. Kaittanis, S. Santra, A. Asati, and J. M. Perez (2012). Nanoscale 4, 2117.CrossRefGoogle Scholar
  12. 12.
    I. Celardo, J. Z. Pedersen, E. Traversa, and L. Ghibelli (2011). Nanoscale 4, 1411.CrossRefGoogle Scholar
  13. 13.
    G. Lamvu, J. Feranec, and E. Blanton (2017). Am. J. Obstet. Gynecol. 7, 193.Google Scholar
  14. 14.
    V. Adam, M. Matolic, M. Karaman, E. Stojcic, A. Smiljanic, and I. Skok (2015). Periodicum Biologorum UDC 117, 225.Google Scholar
  15. 15.
    T. Masui, K. Fujiwara, K. Machida, and G. Adachi (1997). Chem. Mater. 9, 2197.CrossRefGoogle Scholar
  16. 16.
    F. J. Chen, Y. L. Cao, and D. Z. Jia (2011). App. Surf. Sci. 257, 9226.CrossRefGoogle Scholar
  17. 17.
    W. Cao, X. Q. Li, L. Liu, T. H. Yang, C. Li, and H. T. Fan (2006). Carbohydr. Polym. 66, 149.CrossRefGoogle Scholar
  18. 18.
    C. Liu, Q. Lin, Y. Gao, L. Ye, Y. Xing, and T. Xi (2007). Carbohydr. Polym 67, 313.CrossRefGoogle Scholar
  19. 19.
    R. Seymour, R. L. Julian, A. Jeanes, and B. L. Lamberts (1980). Carbohydr. Res. 86, 227.CrossRefGoogle Scholar
  20. 20.
    P. Zhang, L. Zhang, and S. Cheng (1999). Biosci. Biotechnol. Biochem. 63, 1197.CrossRefGoogle Scholar
  21. 21.
    A. Sharma and P. S. Kumar, 2, 82 (2012).Google Scholar
  22. 22.
    D. S. Zhang, H. X. Fu, L. Y. Shi, J. H. Fang, and Q. Li (2007). J Solid State Chem. 180, 654.CrossRefGoogle Scholar
  23. 23.
    P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman (2004). Carbon 42, 2433.CrossRefGoogle Scholar
  24. 24.
    S. Jegatheeswaran and M. Sundrarajan (2015). Mater. Sci. Eng. C. Mater. Biol. Appl. 51, 174.CrossRefGoogle Scholar
  25. 25.
    S. B. Maddinedi, J. Sonamuthu, S. S. Yildiz, G. Han, Y. Cai, J. Gao, Q. Ni, and J. Yao (2018). J. Photochem. Photobiol B 186, 189.CrossRefGoogle Scholar
  26. 26.
    S. B. Maddinedi (2017). Environ. Toxicol. Pharmacol 53, 29.CrossRefGoogle Scholar
  27. 27.
    S. B. Maddinedi, B. K. Mandal, and K. K. Anna (2017). Environ. Toxicol. Pharmacol 51, 23.CrossRefGoogle Scholar
  28. 28.
    S. B. Maddinedi, B. K. Mandal, K. K. Anna, V. V. Andharkar, S. H. Patel, S. Ranjan, and N. Dasgupta (2017). J. Photochem. Photobiol B 166, 252.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aesthetic Plastic SurgeryAffiliated Hospital of Hebei University of EngineeringHandanChina
  2. 2.Department of Medical CosmetologyHebei General HospitalShijiazhuangChina
  3. 3.Department of NephropathyCentral Hospital of Xi’anXi’anChina
  4. 4.Department of BurnThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  5. 5.Department of SICUSichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengduChina
  6. 6.Department of NursingSichuan Provincial People’s Hospital & Qionglai HospitalChengduChina

Personalised recommendations