Advertisement

Dynamic Light Scattering and Image Analysis of FePt Based Nanoparticles from Size-Selective Precipitation

  • Pharunee Sarmphim
  • Yaowarat SirisathitkulEmail author
  • Kasidapa Polprasarn
  • Chitnarong Sirisathitkul
Original Paper
  • 34 Downloads

Abstract

Nanoseparation was performed on iron-platinum based nanoparticles from the reaction between iron(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) and platinum(II) acetylacetonate. Dynamic Light Scattering (DLS) provided a rapid and effective technique to monitor the classification of these polydisperse nanoparticles. After the size-selective precipitation, the nanoparticles were separated into 2 groups with different hydrodynamic diameters. In additions, the storage time and additional surfactants also increased the size distribution of nanoparticles. After the repeated size-selective precipitation, the hydrodynamic diameter was reduced to 7.8 nm and the particle diameter of 3.4 nm was averaged from Transmission Electron Microscopy (TEM). Furthermore, the TEM image processing was used to demonstrate the correlation between the size distribution of nanoparticles from the repeated size-selective precipitation and their self-assembly on liquid as well as solid substrates.

Keywords

Magnetic nanoparticles Size-selective precipitation Dynamic light scattering Transmission electron microscopy Image processing 

Notes

Acknowledgments

This work is funded by the Thailand Excellent Center in Physics under Grant Number ThEP-60-PIP-WU3. This research was partially supported by the New Strategic Research (P2P) project, Walailak University, Thailand. The authors would like to thank P. Harding of Walailak University for her suggestions. The technical assistance in TEM imaging by P. Pinsrithong of Scientific Equipment Center, Prince of Songkla University, is acknowledged.

References

  1. 1.
    R. V. Mehta (2017). Mater. Sci. Eng. C 79, 901.CrossRefGoogle Scholar
  2. 2.
    N. Shin, K. Saravanakumar, and M. H. Wang (2019). J. Clust. Sci. 30, 669.CrossRefGoogle Scholar
  3. 3.
    B. Kowalczyk, I. Lagzi, and B. A. Grzybowski (2011). Curr. Opin. Colloid Interface Sci. 16, 135.CrossRefGoogle Scholar
  4. 4.
    Y. Mori (2015). Kona Powder Part. J. 32, 102.CrossRefGoogle Scholar
  5. 5.
    S. A. Tovstun and V. F. Razumov (2017). J. Nanopart. Res. 19, 8.CrossRefGoogle Scholar
  6. 6.
    D. Segets, S. Komada, B. Butz, E. Spiecker, Y. Mori, and W. Peukert (2013). J. Nanopart. Res. 15, 1486.CrossRefGoogle Scholar
  7. 7.
    J. K. Lim, S. P. Yeap, H. X. Che, and S. C. Low (2013). Nanoscale Res. Lett. 8, 381.CrossRefGoogle Scholar
  8. 8.
    P. Sarmphim, K. Chokprasombat, C. Sirisathitkul, Y. Sirisathitkul, K. Ratchaphonsaenwong, S. Pinitsoontorn, and P. Harding (2016). J. Clust. Sci. 27, 1.CrossRefGoogle Scholar
  9. 9.
    K. Chokprasombat, Y. Sirisathitkul, C. Sirisathitkul, P. Sarmphim, and P. Harding (2015). J. Supercond. Nov. Magn. 28, 1199.CrossRefGoogle Scholar
  10. 10.
    Y. Zhou, M. Su, and X. Cai (2017). Kona Powder Part. J. 34, 168.CrossRefGoogle Scholar
  11. 11.
    L. Liu, X. Cai, J. Zhang, and C. Xu (2015). Acta Opt. Sin. 35, 0529001.CrossRefGoogle Scholar
  12. 12.
    Z. Zhao, A. Fisher, Y. Shen, and D. Cheng (2016). J. Clust. Sci. 27, 817.CrossRefGoogle Scholar
  13. 13.
    S. S. K. Kamal, P. K. Sahoo, L. Durai, P. Ghosal, S. Ram, and M. Raja (2010). J. Alloy. Compd. 501, 297.CrossRefGoogle Scholar
  14. 14.
    S. Sun (2006). Adv. Mater. 18, 393.CrossRefGoogle Scholar
  15. 15.
    S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989.CrossRefGoogle Scholar
  16. 16.
    Q. Guo, X. Teng, and H. Yang (2004). Adv. Mater. 16, 1337.CrossRefGoogle Scholar
  17. 17.
    H. Zeynali, S. A. Sebt, H. Arabi, and H. Akbari (2012). J. Clust. Sci. 23, 1107.CrossRefGoogle Scholar
  18. 18.
    A. D. Crisan, J. Bednarcik, S. Michalik, and O. Crisan (2014). J. Alloy. Compd. 615, S188.CrossRefGoogle Scholar
  19. 19.
    Y. Wang, M. L. Yang, B. Xu, Z. Yang, N. T. Hu, L. M. Wei, B. C. Cai, and Y. F. Zhang (2014). J. Colloid Interf. Sci. 417, 100.CrossRefGoogle Scholar
  20. 20.
    Y. Fujihira, T. Hachisu, S. Shitanda, K. Aikawa, A. Sugiyama, J. Mizuno, S. Shoji, T. Asahi, and T. Osaka (2016). J. Electrochem. Soc. 163, D171.CrossRefGoogle Scholar
  21. 21.
    R. Medwal, N. Sehdev, and S. Annapoorni (2013). J. Nanopart. Res. 15, 1423.CrossRefGoogle Scholar
  22. 22.
    P. Sarmphim and C. Sirisathitkul (2019). Mater. Lett. 248, 36.CrossRefGoogle Scholar
  23. 23.
    V. Nandwana, K. E. Elkins, N. Poudyal, G. S. Chaubey, K. Yano, and J. P. Liu (2007). J. Phys. Chem. C 111, 4185.CrossRefGoogle Scholar
  24. 24.
    S. A. Sebt, S. S. Parhizgar, M. Farahmandjou, P. Aberomand, and M. Akhavan (2009). J. Supercond. Nov. Magn. 22, 849.CrossRefGoogle Scholar
  25. 25.
    M. Farahmandjou (2012). J. Supercond. Nov. Magn. 25, 2075.CrossRefGoogle Scholar
  26. 26.
    P. Sarmphim, P. Jantaratana, and C. Sirisathitkul (2019). J. Nanomater. 2018, 3248051.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pharunee Sarmphim
    • 1
  • Yaowarat Sirisathitkul
    • 2
    Email author
  • Kasidapa Polprasarn
    • 1
  • Chitnarong Sirisathitkul
    • 1
    • 3
    • 4
  1. 1.Division of Physics, School of ScienceWalailak UniversityNakhon Si ThammaratThailand
  2. 2.School of InformaticsWalailak UniversityNakhon Si ThammaratThailand
  3. 3.Functional Materials and Nanotechnology Center of ExcellenceWalailak UniversityNakhon Si ThammaratThailand
  4. 4.Thailand Center of Excellence in PhysicsCommission on Higher EducationBangkokThailand

Personalised recommendations