Multi-Functional Biological Effects of Palladium Nanoparticles Synthesized Using Agaricus bisporus

  • S. Mohana
  • S. SumathiEmail author
Original Paper


The present study deals with the biosynthesis of palladium nanoparticles (PdNPs) using Agaricus bisporus and exploring its potential biological applications. The synthesized PdNPs were characterized by UV–visible, FTIR and XRD techniques. Microscopic analyses revealed the triangular (SEM and AFM) and spherical (TEM) morphologies of the nanoparticles with nanosize dimension ranging from 13 to 18 nm. The surface charge of the PdNPs were identified with the help of zeta potential and found to be negatively charged (− 24.3 mV). The PdNPs exhibited good antioxidant effect against DPPH free radicals with maximum radical scavenging activity of 77% using 50 μg/ml. FTIR spectra of the final DPPH solution depicted sharp intense signals at 1018 cm−1 (polysaccharides) and 3342 cm−1 (phenolic acids) evidencing the role of these bio functional groups in neutralizing the free radicals. Antibacterial assay revealed that PdNPs exhibited enhanced growth inhibition effect against gram positive bacteria (S. auerus; S. pyrogens; B. subtilis) than gram negative bacterial pathogens (E. aerogenes; K. pneumoniae; P. vulgaris). Anti-inflammatory activity performed with RBC cells showing 87% of activity for biosynthesized PdNPs. MTT assay demonstrated that PdNPs exhibited excellent cytotoxic effect against PK13 cell lines. Maximum growth inhibition of 79% was observed for the maximum dose (50 µg/ml) with IC50 value of 26.1 µg/ml.


Agaricus bisporus Palladium nanoparticles Radical scavenging Phenolic acids Cytotoxicity 



The authors greatly acknowledge Vellore Institute of Technology for providing lab, instrumentation facilities and financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest in this research work.

Supplementary material

10876_2019_1652_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3341 kb)


  1. 1.
    D. Dhanasekaran, S. Latha, S. Saha, N. Thajuddin, and A. Panneerselvam (2013). J. Exp. Nanosci. 8, 579.CrossRefGoogle Scholar
  2. 2.
    D. Watanabe, M. N. Nilius, and H. J. Freund (2006). Chem. Rev. 106, 4301.CrossRefGoogle Scholar
  3. 3.
    D. Astruc (2007). Inorg. Chem. 46, 1884.CrossRefGoogle Scholar
  4. 4.
    R. K. Joshi, S. Krishnan, M. Yoshimura, and A. Kumar (2009). Nanoscale. Res. Lett. 4, 1191.CrossRefGoogle Scholar
  5. 5.
    M. Sriramulu and S. Sumathi (2018). Adv. Nat. Sci-Nanosci. 9, 025018.CrossRefGoogle Scholar
  6. 6.
    S. Azizi, M. M. Shahri, H. S. Rahman, R. A. Rahim, A. Rasedee, and R. Mohamad (2017). Int. J. Nanomed. 12, 8841.CrossRefGoogle Scholar
  7. 7.
    M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. Poinern (2015). Materials 8, 7278.CrossRefGoogle Scholar
  8. 8.
    D. Sharma, S. Kanchi, and K. Bisetty (2015). Arab. J. Chem.Google Scholar
  9. 9.
    N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol. 5, 1.CrossRefGoogle Scholar
  10. 10.
    A. Kanchana, S. Devarajan, and S. R. Ayyappan (2010). Nano. Micro. Lett. 2, 169.CrossRefGoogle Scholar
  11. 11.
    M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A Chem. 396, 297.CrossRefGoogle Scholar
  12. 12.
    R. K. Petla, S. Vivekanandhan, M. Misra, A. K. Mohanty, and N. Satyanarayana (2012). J. Biomater. Nanobiotechnol. 3, 14.CrossRefGoogle Scholar
  13. 13.
    D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta A. 91, 35.CrossRefGoogle Scholar
  14. 14.
    X. Yang, Q. Li, H. Wang, J. Huang, L. Lin, W. Wang, D. Sun, Y. Su, J. B. Opiyo, L. Hong, and Y. Wang (2010). J. Nanopart. Res. 12, 1589.CrossRefGoogle Scholar
  15. 15.
    F. Arsiya, M. H. Sayadi, and S. Sobhani (2017). Mater. Lett. 186, 113.CrossRefGoogle Scholar
  16. 16.
    M. F. Lengke, M. E. Fleet, and G. Southam (2007). Langmuir. 23, 8982.CrossRefGoogle Scholar
  17. 17.
    S. Momeni and I. Nabipour (2015). Biotechnol. Appl. Biochem. 176, 1937.CrossRefGoogle Scholar
  18. 18.
    J. Cui, N. Zhu, N. Kang, C. Ha, C. Shi, and P. Wu (2017). Chem. Eng. J. 328, 1051.CrossRefGoogle Scholar
  19. 19.
    N. Duran, P. D. Marcato, O. L. Alves, G. I. De Souza, and E. Esposito (2005). J. Nanobiotechnol. 3, 8.CrossRefGoogle Scholar
  20. 20.
    M. A. Elsayed, A. M. Othman, M. M. Hassan, and A. M. Elshafei (2018). Biotech 8, 132.Google Scholar
  21. 21.
    S. Wait, D. Han, V. Muthu, K. Oliver, S. Chrostowski, F. Florindi, F. de Lorenzo, B. Gandouet, G. Spurrier, B. Ryll, and L. Wierinck (2017). J. Cancer Policy 1, 13.Google Scholar
  22. 22.
    K. S. Hemath, G. Naveen Kumar, L. Karthik, and K. V. Bhaskara Rao (2010). Appl. Sci. Res. 6.Google Scholar
  23. 23.
    F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). CA. Cancer. J. Clin. 68, 6.CrossRefGoogle Scholar
  24. 24.
    A. Abdal Dayem, M. Hossain, S. Lee, K. Kim, S. Saha, G. M. Yang, H. Choi, and S. G. Cho (2017). Int. J. Mol. Sci. 18, 1.CrossRefGoogle Scholar
  25. 25.
    A. Manke, L. Wang, and Y. Rojanasakul (2013). Biomed. Res. Int. 2013.Google Scholar
  26. 26.
    P. P. Fu, Q. Xia, H. M. Hwang, P. C. Ray, and H. Yu (2014). J. Food. Drug. Anal. 22, 1.CrossRefGoogle Scholar
  27. 27.
    P. Mattila, P. Salo-Vaananen, K. Konko, H. Aro, and T. Jalava (2002). J. Agric. Food. Chem. 50, 22.Google Scholar
  28. 28.
    M. J. Feeney, A. M. Miller, and P. Roupas (2014). Nutr. Today. 49, 6.CrossRefGoogle Scholar
  29. 29.
    B. M. Kimatu, L. Zhao, Y. Biao, G. Ma, W. Yang, F. Pei, and Q. Hu (2017). Food. Chem. 1, 230.Google Scholar
  30. 30.
    B. Muszynska, K. Kała, J. Rojowski, A. Grzywacz, and W. Opoka (2017). Pol. J. Food. Nutr. Sci. 67, 3.CrossRefGoogle Scholar
  31. 31.
    L. C. Buruleanu, C. Radulescu, A. A. Georgescu, F. A. Danet, R. L. Olteanu, C. M. Nicolescu, and I. D. Dulama (2018). Anal. Lett. 51.Google Scholar
  32. 32.
    J. J. Zhang, Y. Li, T. Zhou, D. P. Xu, P. Zhang, S. Li, and H. B. Li (2016). Molecules 21, 7.CrossRefGoogle Scholar
  33. 33.
    G. Dhamodharan and S. Mirunalini (2010). Pharmacol. Online 2, 456.Google Scholar
  34. 34.
    L. C. Buruleanu, C. Radulescu, A. A. Georgescu, F. A. Danet, R. L. Olteanu, C. M. Nicolescu, and I. D. Dulama (2018). Anal. Lett. 51, 1039.CrossRefGoogle Scholar
  35. 35.
    S. M. El-Sonbaty (2013). Cancer. Nanotechnol. 4, 73.CrossRefGoogle Scholar
  36. 36.
    M. Sriramulu and S. Sumathi (2017). Adv. Nat. Sci Nanosci. 27, 045012.CrossRefGoogle Scholar
  37. 37.
    G. Narasimha, B. Praveen, K. Mallikarjuna, and B. Deva Prasad Raju (2011). Int. J. Nano. Dimens. 2, 29.Google Scholar
  38. 38.
    M. Eskandari-Nojedehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2018). Green. Process. Synth. 7, 38.CrossRefGoogle Scholar
  39. 39.
    M. Eskandari-Nojehdehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2016). Nanotechnol. Rev. 5, 537.CrossRefGoogle Scholar
  40. 40.
    G. Dhamodharan and S. Mirunalini (2013). J. Pharm. Res. 6, 818.Google Scholar
  41. 41.
    R. Deshpande, M. D. Bedre, S. Basavaraja, B. Sawle, S. Y. Manjunath, and A. Venkataraman (2010). Colloids Surf. B 1, 79.Google Scholar
  42. 42.
    M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J. P. Helsper, and L. P. Van Griensven (2011). Food Chem. 129, 4.CrossRefGoogle Scholar
  43. 43.
    Z. Neihaya and H. H. Zaman (2018). Microb. Pathog. 116, 200.CrossRefGoogle Scholar
  44. 44.
    K. Tahir, S. Nazir, A. Ahmad, B. Li, S. A. Shah, A. U. Khan, G. M. Khan, Q. U. Khan, Z. U. Khan, and F. U. Khan (2016). Rsc. Adv. 89, 85903.CrossRefGoogle Scholar
  45. 45.
    M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A Chem. 396.Google Scholar
  46. 46.
    K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, and R. M. Gengan (2016). J. Photoch. Photobiol. B 165, 87.CrossRefGoogle Scholar
  47. 47.
    I. Nallamuthu, A. Parthasarathi, and F. Khanum (2013). Int. Curr. Pharm. J. 2, 12.CrossRefGoogle Scholar
  48. 48.
    P. Dauthal and M. Mukhopadhyay (2013). Ind. Eng. Chem. Res. 51, 18131.CrossRefGoogle Scholar
  49. 49.
    I. Khan, K. Saeed, and I. Khan (2017). Arab. J. Chem.Google Scholar
  50. 50.
    M. Gąsecka, Z. Magdziak, M. Siwulski, and M. Mleczek (2018). Eur. Food. Res. Technol. 2, 244.Google Scholar
  51. 51.
    L. Duan, M. Li, and H. Liu (2015). Iet Nanobiotechnol. 9, 349.CrossRefGoogle Scholar
  52. 52.
    G. Sharmila, M. F. Fathima, S. Haries, S. Geetha, N. M. Kumar, and C. Muthukumaran (2017). J. Mol. Struct. 15, 1138.Google Scholar
  53. 53.
    A. Lesniak, A. Salvati, M. J. Santos-Martinez, M. W. Radomski, and K. A. Dawson (2013). J. Am. Chem. Soc. 135, 4.CrossRefGoogle Scholar
  54. 54.
    L. Wang, C. Hu, and L. Shao (2017). Int. J. Nanomed. 12, 1227.CrossRefGoogle Scholar
  55. 55.
    A. Sarwar, H. Katas, S. N. Samsudin, and N. M. Zin (2015). PLoS ONE 10, 4.CrossRefGoogle Scholar
  56. 56.
    A. Tantary, A. Masood, A. H. Bhat, K. B. Dar, M. A. Zargar, and S. A. Ganie (2017). Free Radicals. Antioxidants. 7.Google Scholar
  57. 57.
    I. Palaciosa, M. Lozanoa, C. Moroa, M. D. Arrigoa, M. A. Rostagnoa, J. A. Martínez, A. García-Lafuentea, E. Guillamóna, and A. Villares (2011). Food Chem. 128.Google Scholar
  58. 58.
    C. Petrarca, E. Clemente, L. Di Giampaolo, R. Mariani-Costantini, K. Leopold, R. Schindl, L. V. Lotti, R. Mangifesta, E. Sabbioni, Q. Niu, and G. Bernardini (2014). J. Immunol. Res. 2014.Google Scholar
  59. 59.
    R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, and Y. Xiong (2013). J. Am. Chem. Soc. 8, 135.Google Scholar
  60. 60.
    S. Gurunathan, E. Kim, J. Han, and J. Park (2015). J. H. Molecules. 20, 12.Google Scholar
  61. 61.
    M. I. Sriram, K. Kalishwaralal, V. Deepak, R. Gracerosepat, K. Srisakthi, and S. Colloid (2011). Surface B. 85, 2.CrossRefGoogle Scholar
  62. 62.
    S. Gnanasekar, J. Murugaraj, B. Dhivyabharathi, V. Krishnamoorthy, P. K. Jha, P. Seetharaman, R. Vilwanathan, and S. Sivaperumal (2017). J. Appl. Biomed. 16, 1.Google Scholar
  63. 63.
    K. Shanthi, V. Sreevani, K. Vimala, and S. Kannan (2017). P. Natl. A. Sci. India B. 87, 4.Google Scholar
  64. 64.
    S. S. Rokade, K. A. Joshi, K. Mahajan, G. Tomar, D. S. Dubal, V. Singh, R. K. Parihar, J. Bellare, and S. Ghosh (2017). 2.Google Scholar
  65. 65.
    S. Saranya, K. Vijayaranai, S. Pavithra, N. Raihana, and K. Kumanan (2017). Toxicol. Rep. 4.Google Scholar
  66. 66.
    M. Dinesh, S. M. Roopan, C. I. Selvaraj, and P. Arunachalam (2017). J. Photochem. Photobiol. 1, 167.Google Scholar
  67. 67.
    G. Sharmila, S. Haries, M. F. Fathima, S. Geetha, N. M. Kumar, and C. Muthukumaran (2017). Powder. Technol. 1320.Google Scholar
  68. 68.
    K. Tahir, S. Nazir, B. Li, A. Ahmad, T. Nasir, A. U. Khan, S. A. A. Shah, Z. U. H Khan, G. Yasin, and M. U. Hameed (2016). J. Photoch. Photobiol. B. 164.Google Scholar
  69. 69.
    K. Bhakyaraj, S. Kumaragurul, K. Gopinath, V. Sabitha, P. R. Kaleeswarran, V. Karthika, A. Sudha, U. Muthukumaran, K. Jayakumar, S. Mohan, and A. Arumugam (2017). Clust. Sci. 28, 1.CrossRefGoogle Scholar
  70. 70.
    V. Manikandan, P. Velmurugan, J. H. Park, N. Lovanh, S. K. Seo, P. Jayanthi, Y. J. Park, M. Cho, and B. T. Oh (2016). Mater. Lett. 185, 335.CrossRefGoogle Scholar
  71. 71.
    A. J. Kora and L. Rastogi (2015). Arab. J. Chem.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations