Advertisement

Photocatalytic Degradation of Azo Dye Using Biogenic SnO2 Nanoparticles with Antifungal Property: RSM Optimization and Kinetic Study

  • Deena Titus
  • E. James Jebaseelan SamuelEmail author
Article
  • 16 Downloads

Abstract

Photocatalysts are a boon to the emerging pollution and environmental hazards posed due to the use of dyes in industries. Existing conventional methods are sometimes expensive and might release toxic by-products. A much greener approach to the challenge is the usage of nanoparticles which is a much safer and an environment friendly method to degrade the harmful and toxic chemicals. Hence, in the present study we have come up with a greener way of synthesizing spherical shaped tin oxide nanoparticles (SnO2 NPs) as a photocatalyst, utilizing Arachis hypogaea (A. hypogaea). The methanolic extract of A. hypogaea shell was used for preparation of SnO2 NPs having an average particle size of 60 nm, which was then used as the catalyst for Congo red dye degradation. The effect of dye concentration, catalyst concentration and irradiation time on the percentage of degradation and the optimization of the process was studied by Response Surface Methodology (RSM) based on Box–Behnken design. The obtained RSM model with R2 = 98.60% showed a satisfactory correlation between the predicted and experimental values of dye removal. 89% degradation was achieved under the optimum condition (1 mg photocatalyst concentration, 1 mM dye concentration) after 50 min time. In addition, the antifungal activity of the prepared nanoparticles was also carried out and revealed better results against Aspergillus niger (A. niger) than Aspergillus flavus (A. flavus), at higher concentration of SnO2 NPs. Thus we were able to synthesize a photocatalyst using an agricultural waste which can degrade an azo dye and also exhibits antifungal activity.

Keywords

Arachis hypogaea SnO2 NPs Photocatalyst RSM Antifungal activity 

Notes

Acknowledgements

Authors thank Dr. S. Mohana Roopan for lab and research facility through DST-FTYS (SB/FT/CS-113/2013) and DBT-RGYI scheme (No. BT/PR6891/GBT/27/491/2012). Also authors acknowledge DST (SERB) SR/SO/BB 75/2010 for the financial support. We also thank VIT-SIF for GCMS analysis and STIC-Cochin for TEM.

Compliance with Ethical Standards

Conflict of interest

The authors confirm that there are no known conflict of interest associated with the publication of this manuscript.

Supplementary material

10876_2019_1585_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3895 kb)

References

  1. 1.
    G. Elango and S. M. Roopan (2016). J. Photochem. Photobiol. B Biol. 155, 34.CrossRefGoogle Scholar
  2. 2.
    Ratna and B. S. Padhi (2012). Int. J. Environ. Sci. 3, 940.Google Scholar
  3. 3.
    N. Daneshvar, D. Salari, and A. R. Khataee (2004). J. Photochem. Photobiol. A Chem. 162, 317.CrossRefGoogle Scholar
  4. 4.
    R. Bendi and T. Imae (2013). RSC Adv. 3, 16279.CrossRefGoogle Scholar
  5. 5.
    Y. Li, W. Wu, P. Dai, L. Zhang, Z. Sun, G. Li, M. Wu, X. Chen, and C. Chen (2014). RSC Adv. 4, 23831.CrossRefGoogle Scholar
  6. 6.
    A. Daya Mani, B. Rama Raju, N. Xanthopoulos, P. Ghosal, B. Sreedhar, and C. Subrahmanyam (2013). Chem. Eng. J. 228, 545.CrossRefGoogle Scholar
  7. 7.
    E. E. Elemike, D. C. Onwudiwe, A. C. Ekennia, R. C. Ehiri, and N. J. Nnaji (2017). Mater. Sci. Eng. C 75, 980.CrossRefGoogle Scholar
  8. 8.
    A. M. Al-Hamdi, M. Sillanpää, and J. Dutta (2015). J. Alloys Compd. 618, 366.CrossRefGoogle Scholar
  9. 9.
    P. S. Kumar, M. Selvakumar, S. G. Babu, and S. Karuthapandian (2016). Mater. Res. Bull. 83, 522.CrossRefGoogle Scholar
  10. 10.
    E. Fosso-Kankeu, F. Waanders, M. Geldenhuys, in 7th International Conference on Latest Trends in Engineering and Technology (ICLTET’2015), Irene, Pretoria (South Africa) (2015).  https://doi.org/10.15242/IIE.E1115022.
  11. 11.
    E. Fosso-Kankeu, H. Mittal, S. B. Mishra, and A. K. Mishra (2015). J. Ind. Eng. Chem. 22, 171.CrossRefGoogle Scholar
  12. 12.
    E. Haritha, S. M. Roopan, G. Madhavi, G. Elango, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. B Biol. 162, 441.CrossRefGoogle Scholar
  13. 13.
    J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. B Biol. 162, 395.CrossRefGoogle Scholar
  14. 14.
    M. D. Yates, R. D. Cusick, and B. E. Logan (2013). ACS Sustain. Chem. Eng. 1, 1165.CrossRefGoogle Scholar
  15. 15.
    K. Prabakaran, C. Ragavendran, and D. Natarajan (2016). RSC Adv. 6, 44972.CrossRefGoogle Scholar
  16. 16.
    S. A. Dahoumane, M. Mechouet, K. Wijesekera, C. D. M. Filipe, C. Sicard, D. A. Bazylinski, and C. Jeffryes (2017). Green Chem. 19, 552.CrossRefGoogle Scholar
  17. 17.
    A. Ahmad, S. Senapati, M. Islam Khan, R. Kumar, and M. Sastry (2003). Langmuir 19, 3550.CrossRefGoogle Scholar
  18. 18.
    A. M. Wen and N. F. Steinmetz (2016). Chem. Soc. Rev. 45, 4074.CrossRefGoogle Scholar
  19. 19.
    A. Ahmad, Y. Wei, F. Syed, M. Imran, Z. U. H. Khan, K. Tahir, A. U. Khan, M. Raza, Q. Khan, and Q. Yuan (2015). RSC Adv. 5, 99364.CrossRefGoogle Scholar
  20. 20.
    F. Duman, I. Ocsoy, and F. O. Kup (2016). Mater. Sci. Eng. C 60, 333.CrossRefGoogle Scholar
  21. 21.
    S. Naraginti and Y. Li (2017). J. Photochem. Photobiol. B Biol. 170, 225.CrossRefGoogle Scholar
  22. 22.
    J. K. Sharma, P. Srivastava, S. Ameen, M. S. Akhtar, S. K. Sengupta, and G. Singh (2017). Mater. Res. Bull. 91, 98.CrossRefGoogle Scholar
  23. 23.
    M. Kundu, G. Karunakaran, and D. Kuznetsov (2017). Powder Technol. 311, 132.CrossRefGoogle Scholar
  24. 24.
    J. R. Nakkala, R. Mata, and S. R. Sadras (2017). J. Colloid Interface Sci. 499, 33.CrossRefGoogle Scholar
  25. 25.
    M. N. Alam, S. Das, S. Batuta, N. Roy, A. Chatterjee, D. Mandal, and N. A. Begum (2014). ACS Sustain. Chem. Eng. 2, 652.CrossRefGoogle Scholar
  26. 26.
    K. Mallikarju, G. R. Dillip, G. Narasimha, N. J. Sushma, and B. D. Prasad Raj (2012). Res. J. Nanosci. Nanotechnol. 2, 17.CrossRefGoogle Scholar
  27. 27.
    D. Raghunandan, S. Basavaraja, B. Mahesh, S. Balaji, S. Y. Manjunath, and A. Venkataraman (2009). NanoBiotechnology 5, 34.CrossRefGoogle Scholar
  28. 28.
    B. Ankamwar (2010). E-J Chem. 7, 1334.CrossRefGoogle Scholar
  29. 29.
    A. Thirumurugan, G. J. Jiflin, G. Rajagomathi, N. A. Tomy, S. Ramachandran, and R. Jaiganesh (2010). Int. J. Biol. Technol. 1, 75.Google Scholar
  30. 30.
    M. S. Akhtar, J. Panwar, and Y. Yun (2013). ACS Sustain. Chem. Eng. 1, 591.CrossRefGoogle Scholar
  31. 31.
    E. Shayegan Mehr, M. Sorbiun, A. Ramazani, and S. Taghavi Fardood (2018). J. Mater. Sci. Mater. Electron. 29, 1333.CrossRefGoogle Scholar
  32. 32.
    A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N. S. Alharbi, J. M. Khaled, and D. Kuznetsov (2017). J. Clust. Sci. 28, 995.CrossRefGoogle Scholar
  33. 33.
    K. Velu, D. Elumalai, P. Hemalatha, A. Janaki, M. Babu, M. Hemavathi, and P. K. Kaleena (2015). Environ. Sci. Pollut. Res. 22, 17769.CrossRefGoogle Scholar
  34. 34.
    D. Raju, U. J. Mehta, and A. Ahmad (2013). Curr. Nanosci. 9, 107.Google Scholar
  35. 35.
    Q. Tian, Y. Tian, Z. Zhang, L. Yang, and S. Hirano (2014). J. Power Sources 269, 479.CrossRefGoogle Scholar
  36. 36.
    A. A. Durant, C. Rodríguez, A. I. Santana, C. Herrero, J. C. Rodríguez, and M. P. Gupta (2013). Rec. Nat. Prod. 7, 15.Google Scholar
  37. 37.
    A. R. Khataee, M. Fathinia, A. Naseri, A. Hasanzadeh, F. Vafaei, A. Emami, Y. Hanifehpour, and S. W. Joo (2014). Res. Chem. Intermed. 40, 1283.CrossRefGoogle Scholar
  38. 38.
    R. Nasiri, N. Arsalani, and Y. Panahian (2018). J. Clean. Prod. 201, 507.CrossRefGoogle Scholar
  39. 39.
    R. Ma, P. Zhou, H. Zhan, C. Chen, and Y. He (2013). Opt. Commun. 291, 476.CrossRefGoogle Scholar
  40. 40.
    R. Sompalle, S. M. Roopan, N. A. Al-Dhabi, K. Suthindhiran, G. Sarkar, and M. V. Arasu (2016). J. Photochem. Photobiol. B Biol. 162, 232.CrossRefGoogle Scholar
  41. 41.
    L. Fu, Y. Zheng, Q. Ren, A. Wang, and B. Deng (2015). J. Ovonic Res. 11, 21.Google Scholar
  42. 42.
    A. Bhattacharjee and M. Ahmaruzzaman (2015). Mater. Lett. 157, 260.CrossRefGoogle Scholar
  43. 43.
    A. Bhattacharjee and M. Ahmaruzzaman (2015). Mater. Lett. 145, 74.CrossRefGoogle Scholar
  44. 44.
    K. P. Gattu, K. Ghule, A. A. Kashale, V. B. Patil, D. M. Phase, R. S. Mane, S. H. Han, R. Sharma, and A. V. Ghule (2015). RSC Adv. 5, 72849.CrossRefGoogle Scholar
  45. 45.
    S. T. Tammina and B. K. Mandal (2016). J. Mol. Liq. 221, 415.CrossRefGoogle Scholar
  46. 46.
    T. T. Bhosale, H. M. Shinde, N. L. Gavade, S. B. Babar, V. V. Gawade, S. R. Sabale, R. J. Kamble, B. S. Shirke, and K. M. Garadkar (2018). J. Mater. Sci. Mater. Electron. 29, 6826.CrossRefGoogle Scholar
  47. 47.
    Y. C. Chang, J. C. Lin, S. Y. Chen, L. Y. Hung, Y. R. Lin, and C. Y. Chen (2018). Mater. Res. Bull. 100, 429.CrossRefGoogle Scholar
  48. 48.
    M. A. Ghannoum and L. B. Rice (1999). Clin. Microbiol. Rev. 12, 501.CrossRefGoogle Scholar
  49. 49.
    A. Nasrollahi, K. Pourshamsian, and P. Mansourkiaee (2011). Int. J. Nano Dimens. 1, 233.Google Scholar
  50. 50.
    I. O. Lima, F. O. Pereira, W. A. de Oliveira, E. D. O. Lima, E. A. Menezes, F. A. Cunha, and M. D. F. F. M. Diniz (2013). J. Essent. Oil Res. 25, 138.CrossRefGoogle Scholar
  51. 51.
    M. A. Alghuthaymi, H. Almoammar, M. Rai, E. Said-Galiev, and K. A. Abd-Elsalam (2015). Biotechnol. Biotechnol. Equip. 29, 221.CrossRefGoogle Scholar
  52. 52.
    C. B. Ong, A. W. Mohammad, R. Rohani, M. M. Ba-Abbad, and N. H. H. Hairom (2016). Process Saf. Environ. Prot. 104, 549.CrossRefGoogle Scholar
  53. 53.
    H. Kolya, P. Maiti, A. Pandey, and T. Tripathy (2015). J. Anal. Sci. Technol. 6, 33.CrossRefGoogle Scholar
  54. 54.
    R. M. Kumari, N. Thapa, N. Gupta, A. Kumar, and S. Nimesh (2016). Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045009.CrossRefGoogle Scholar
  55. 55.
    R. Atchudan, T. N. J. I. Edison, S. Perumal, M. Shanmugam, and Y. R. Lee (2017). J. Photochem. Photobiol. A Chem. 337, 100.CrossRefGoogle Scholar
  56. 56.
    R. S. Kumar and B. Gnanavel (2017). J. Mater. Sci. Mater. Electron. 28, 4253.CrossRefGoogle Scholar
  57. 57.
    W. K. Jo, S. Kumar, M. A. Isaacs, A. F. Lee, and S. Karthikeyan (2017). Appl. Catal. B Environ. 201, 159.CrossRefGoogle Scholar
  58. 58.
    A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, and M. Atarod (2016). J. Alloys Compd. 689, 15.CrossRefGoogle Scholar
  59. 59.
    P. Borthakur, P. K. Boruah, G. Darabdhara, P. Sengupta, M. R. Das, A. I. Boronin, L. S. Kibis, M. N. Kozlova, and V. E. Fedorov (2016). J. Environ. Chem. Eng. 4, 4600.CrossRefGoogle Scholar
  60. 60.
    S. Begum, T. B. Devi, and M. Ahmaruzzaman (2016). J. Environ. Chem. Eng. 4, 2976.CrossRefGoogle Scholar
  61. 61.
    G. Elango and S. M. Roopan (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 367.CrossRefGoogle Scholar
  62. 62.
    A. Chithambararaj, N. S. Sanjini, A. C. Bose, and S. Velmathi (2013). Catal. Sci. Technol. 3, 1405.CrossRefGoogle Scholar
  63. 63.
    S. Ragupathy and T. Sathya (2016). J. Mater. Sci. Mater. Electron. 27, 5770.CrossRefGoogle Scholar
  64. 64.
    H. Derikvandi and A. Nezamzadeh-ejhieh (2017). J. Photochem. Photobiol. A Chem. 348, 68.CrossRefGoogle Scholar
  65. 65.
    K. Kalantari, M. B. Ahmad, H. R. F. Masoumi, K. Shameli, M. Basri, and R. Khandanlou (2014). Int. J. Mol. Sci. 15, 12913.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Gel Dosimetry Lab, Department of Physics, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations