Advertisement

Silicon and Germanium-Based Sesquioxanes as Versatile Building Blocks for Cage Metallacomplexes. A Review

  • Mikhail M. Levitsky
  • Yan V. Zubavichus
  • Alexander A. Korlyukov
  • Victor N. Khrustalev
  • Elena S. Shubina
  • Alexey N. BilyachenkoEmail author
original Paper
  • 51 Downloads

Abstract

In the present paper, a rapidly developing field of polynuclear cage metallasilsesquioxanes and metallagermsesquioxanes chemistry is surveyed. Deliberate synthesis techniques aimed at the cages of specific nuclearity are described with the emphasis placed onto analysis of similarities and differences between silicon- and germanium-based substances. General approaches towards design of polymeric supramolecular assemblies based on cage metallasilsesquioxanes and metallagermsesquioxanes are outlined and illustrated with appropriate examples. Striking catalytic properties of the title compounds in homogeneous oxidation reactions are noted as one of their prospective application field.

Keywords

Metallasilsesquioxanes Metallagermsesquioxanes Cage compounds High-nuclearity Single-crystal X-ray diffraction Coordination polymers Supramolecular design Catalytic activity 

Notes

Acknowledgements

This work has been supported by the RUDN University Program “5–100”, the Russian Foundation for Basic Research (Grant Nos. 19-03-00488, 17-03-00993). Y.V.Z. is indebted to Ministry of Science and Higher Education of the Russian Federation (project AAAA-A19-119020890025-3)

Supplementary material

10876_2019_1567_MOESM1_ESM.rar (19.2 mb)
Supplementary material 1 (RAR 19698 kb)

References

  1. 1.
    F. T. Edelmann, in P. Jutzi and U. Schubert (eds.), Silicon Chemistry: From the Atom to Extended Systems (Wiley, 2007), pp. 383–394.Google Scholar
  2. 2.
    P. Jutzi, H. M. Lindemann, J. -O. Nolte, and M. Schneider, in P. Jutzi and U. Schubert (eds.), Silicon Chemistry: From the Atom to Extended Systems (Wiley, Hoboken, 2007), pp. 372–382.Google Scholar
  3. 3.
    R. Murugavel, A. Voigt, M. G. Walawalkar, and H. W. Roesky (1996). Chem. Rev. 96, 2205–2236.CrossRefGoogle Scholar
  4. 4.
    V. Lorenz, A. Fischer, S. Gießmann, J. W. Gilje, Y. Gun’ko, K. Jacob, and F. T. Edelmann (2000). Coord. Chem. Rev. 206–207, 321–368.CrossRefGoogle Scholar
  5. 5.
    R. W. J. M. Hanssen, R. A. van Santen, and H. C. L. Abbenhuis (2004). Eur. J. Inorg. Chem. 2004, 675–683.CrossRefGoogle Scholar
  6. 6.
    H. W. Roesky, G. Anantharaman, V. Chandrasekhar, V. Jancik, and S. Singh (2004). Chem. Eur. J. 10, 4106–4114.CrossRefGoogle Scholar
  7. 7.
    D. Pinkert and C. Limberg (2014). Chem. Eur. J. 20, 9166–9175.CrossRefGoogle Scholar
  8. 8.
    M. M. Levitsky, B. G. Zavin, and A. N. Bilyachenko (2007). Russ. Chem. Rev. 76, 847–866.CrossRefGoogle Scholar
  9. 9.
    M. M. Levitsky and A. N. Bilyachenko (2016). Coord. Chem. Rev. 306, 235–269.CrossRefGoogle Scholar
  10. 10.
    M. Levitskii, V. Smirnov, B. Zavin, A. Bilyachenko, and A. Y. Rabkina (2009). Kinet. Catal. 50, 490–507.CrossRefGoogle Scholar
  11. 11.
    M. M. Levitsky, A. N. Bilyachenko, and G. B. Shul’pin (2017). J. Organomet. Chem. 849–850, 201–218.CrossRefGoogle Scholar
  12. 12.
    H. C. L. Abbenhuis (2000). Chem. Eur. J. 6, 25–32.CrossRefGoogle Scholar
  13. 13.
    R. Duchateau (2002). Chem. Rev. 102, 3525–3542.CrossRefGoogle Scholar
  14. 14.
    A. J. Ward, A. F. Masters, and T. Maschmeyer Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts. in C. Hartmann-Thompson (ed.), Applications of Polyhedral Oligomeric Silsesquioxanes (Springer, Netherlands, 2011), pp. 135–166.CrossRefGoogle Scholar
  15. 15.
    E. A. Quadrelli and J.-M. Basset (2010). Coord. Chem. Rev. 254, 707–728.CrossRefGoogle Scholar
  16. 16.
    P. Guillo, M. I. Lipschutz, M. E. Fasulo, and T. D. Tilley (2017). ACS Catal. 7, 2303–2312.CrossRefGoogle Scholar
  17. 17.
    M. Ventura, V. Tabernero, T. Cuenca, B. Royo, and G. Jiménez (2016). Eur. J. Inorg. Chem. 2016, 2843–2849.CrossRefGoogle Scholar
  18. 18.
    M. Białek, M. Pochwała, A. Franczyk, K. Czaja, and B. Marciniec (2017). Polym. Int. 66, 960–967.CrossRefGoogle Scholar
  19. 19.
    E. V. Beletskiy, X. Hou, Z. Shen, J. R. Gallagher, J. T. Miller, Y. Wu, T. Li, M. C. Kung, and H. H. Kung (2016). J. Am. Chem. Soc. 138, 4294–4297.CrossRefGoogle Scholar
  20. 20.
    M. M. Levitsky, A. I. Yalymov, A. N. Kulakova, A. A. Petrov, and A. N. Bilyachenko (2017). J. Mol. Catal. A: Chem. 426, 297–304.CrossRefGoogle Scholar
  21. 21.
    A. N. Bilyachenko (2019) (in preparation).Google Scholar
  22. 22.
    G.-L. Davies, J. O’Brien, and Y. K. Gun’ko (2017). Sci. Rep. 7, 45862.CrossRefGoogle Scholar
  23. 23.
    K. S. Lokare, N. Frank, B. Braun-Cula, I. Goikoetxea, J. Sauer, and C. Limberg (2016). Angew. Chem. Int. Ed. 55, 12325–12329.CrossRefGoogle Scholar
  24. 24.
    N. Manicke, S. Hoof, M. Keck, B. Braun-Cula, M. Feist, and C. Limberg (2017). Inorg. Chem. 56, 8554–8561.CrossRefGoogle Scholar
  25. 25.
    M. M. Levitsky (2002). Russ. Chem. J. XLVI, 51–62.Google Scholar
  26. 26.
    A. N. Bilyachenko, M. M. Levitsky, A. I. Yalymov, A. A. Korlyukov, V. N. Khrustalev, A. V. Vologzhanina, L. S. Shul’pina, N. S. Ikonnikov, A. E. Trigub, P. V. Dorovatovskii, X. Bantreil, F. Lamaty, J. Long, J. Larionova, I. E. Golub, E. S. Shubina, and G. B. Shul’pin (2016). Angew. Chem. Int. Ed. 55, 15360–15363.CrossRefGoogle Scholar
  27. 27.
    M. M. Levitsky, A. N. Bilyachenko, and E. S. Shubina (2019). Coord. Chem. Rev. 386, 209–239.CrossRefGoogle Scholar
  28. 28.
    H. He, G.-J. Cao, S.-T. Zheng, and G.-Y. Yang (2009). J. Am. Chem. Soc. 131, 15588–15589.CrossRefGoogle Scholar
  29. 29.
    X.-F. Tan, J. Zhou, H.-H. Zou, L. Fu, and Q. Tang (2017). Inorg. Chem. 56, 10361–10369.CrossRefGoogle Scholar
  30. 30.
    L.-L. Li, G.-J. Cao, J.-W. Zhao, H. He, B.-F. Yang, and G.-Y. Yang (2016). Inorg. Chem. 55, 5671–5683.CrossRefGoogle Scholar
  31. 31.
    H. Masakazu, T. Shinsuke, Y. Takashi, U. Keiji, U. Masafumi, and M. Hideyuki (2005). Chem. Lett. 34, 1542–1543.CrossRefGoogle Scholar
  32. 32.
    A. A. Korlyukov, M. A. Eskova, I. M. Tkachenko, Y. N. Kononevich, O. I. Shchegolikhina, and A. M. Muzafarov (2015). Mendeleev Commun. 25, 226–228.CrossRefGoogle Scholar
  33. 33.
    A. N. Bilyachenko, A. N. Kulakova, L. S. Shul’pina, M. M. Levitsky, A. A. Korlyukov, V. N. Khrustalev, Y. V. Zubavichus, P. V. Dorovatovskii, U. Y. S. Tsareva, E. S. Shubina, A. A. Petrov, N. V. Vorontsov, and G. B. Shul’pin (2018). J. Organomet. Chem. 867, 133–141.CrossRefGoogle Scholar
  34. 34.
    Y. N. Kononevich, A. A. Anisimov, A. A. Korlyukov, U. Y. S. Tsareva, O. I. Shchegolikhina, and A. M. Muzafarov (2017). Mendeleev Commun. 27, 332–334.CrossRefGoogle Scholar
  35. 35.
    A. Cornia, A. C. Fabretti, G. Gavioli, C. Zucchi, M. Pizzotti, A. Vizi-Orosz, O. I. Shchegolikhina, Y. A. Pozdniakova, and G. Pályi (1998). J. Cluster Sci. 9, 295–319.CrossRefGoogle Scholar
  36. 36.
    C. Zucchi, M. Mattioli, A. Cornia, A. C. Fabretti, G. Gavioli, M. Pizzotti, R. Ugo, Y. A. Pozdniakova, O. I. Shchegolikhina, A. A. Zhdanov, and G. Pályi (1998). Inorg. Chim. Acta 280, 282–287.CrossRefGoogle Scholar
  37. 37.
    A. N. Bilyachenko, N. V. Sergienko, A. A. Korlyukov, M. Y. Antipin, B. G. Zavin, and M. M. Levitskii (2006). Russ. Chem. Bull. 55, 943–945.CrossRefGoogle Scholar
  38. 38.
    N. V. Sergienko, N. V. Cherkun, A. A. Korlyukov, A. A. Sochikhin, V. D. Myakushev, T. V. Strelkova, and B. G. Zavin (2013). Russ. Chem. Bull. 62, 1999–2006.CrossRefGoogle Scholar
  39. 39.
    A. N. Bilyachenko, A. I. Yalymov, A. A. Korlyukov, J. Long, J. Larionova, Y. Guari, A. V. Vologzhanina, M. A. Es’kova, E. S. Shubina, and M. M. Levitsky (2016). Dalton Trans. 45, 7320–7327.CrossRefGoogle Scholar
  40. 40.
    A. N. Bilyachenko, A. I. Yalymov, M. M. Levitsky, A. A. Korlyukov, M. A. Es’kova, J. Long, J. Larionova, Y. Guari, L. S. Shul’pina, N. S. Ikonnikov, A. L. Trigub, Y. V. Zubavichus, I. E. Golub, E. S. Shubina, and G. B. Shul’pin (2016). Dalton Trans. 45, 13663–13666.CrossRefGoogle Scholar
  41. 41.
    V. Pashchenko, B. Brendel, B. Wolf, M. Lang, K. Lyssenko, O. Shchegolikhina, Y. Molodtsova, L. Zherlitsyna, N. Auner, F. Schütz, M. Kollar, P. Kopietz, and N. Harrison (2005). Eur. J. Inorg. Chem. 2005, 4617–4625.CrossRefGoogle Scholar
  42. 42.
    Y.-N. Liu, H.-F. Su, Y.-W. Li, Q.-Y. Liu, Z. Jagličić, W.-G. Wang, C.-H. Tung, and D. Sun (2019). Inorg. Chem. 58, 4574–4582.CrossRefGoogle Scholar
  43. 43.
    A. N. Kulakova, A. Bilyachenko, A. Korlyukov, L. S. Shul’pina, X. Bantreil, F. Lamaty, E. Shubina, M. Levitsky, N. S. Ikonnikov, and G. Shul’pin (2018). Dalton Trans. 47, 15666–15669.CrossRefGoogle Scholar
  44. 44.
    A. N. Bilyachenko, A. N. Kulakova, M. M. Levitsky, A. A. Petrov, A. A. Korlyukov, L. S. Shul’pina, V. N. Khrustalev, P. V. Dorovatovskii, A. V. Vologzhanina, U. S. Tsareva, I. B. Golub, E. S. Gulyaeva, E. S. Shubina, and G. B. Shul’pin (2017). Inorg. Chem. 56, 4093–4103.CrossRefGoogle Scholar
  45. 45.
    V. A. Igonin, S. V. Lindeman, Y. T. Struchkov, O. I. Shchegolikhina, Y. A. Molodtsova, Y. A. Pozdnyakova, and A. A. Zhdanov (1993). Russ. Chem. Bull. 42, 168–173.CrossRefGoogle Scholar
  46. 46.
    V. A. Igonin, S. V. Lindeman, Y. T. Struchkov, Y. A. Molodtsova, Y. A. Pozdnyakova, O. I. Shchegolikhina, and A. A. Zhdanov (1993). Russ. Chem. Bull. 42, 176–181.CrossRefGoogle Scholar
  47. 47.
    C. Zucchi, O. I. Shchegolikhina, M. Borsari, A. Cornia, G. Gavioli, A. C. Fabretti, E. Rentschler, D. Gatteschi, R. Ugo, R. Psaro, Y. A. Pozdniakova, S. V. Lindeman, A. A. Zhdanov, and G. Pályi (1996). J. Mol. Catal. A: Chem. 107, 313–321.CrossRefGoogle Scholar
  48. 48.
    A. N. Bilyachenko, M. M. Levitsky, A. A. Korlyukov, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul’pina, E. S. Shubina, A. V. Vologzhanina, and G. B. Shul’pin (2018). Eur. J. Inorg. Chem. 2018, 2505–2511.CrossRefGoogle Scholar
  49. 49.
    A. N. Bilyachenko, A. Yalymov, M. Dronova, A. A. Korlyukov, A. V. Vologzhanina, M. A. Es’kova, J. Long, J. Larionova, Y. Guari, P. V. Dorovatovskii, E. S. Shubina, and E. S. Levitsky (2017). Inorg. Chem. 56, 12751–12763.CrossRefGoogle Scholar
  50. 50.
    V. Pashchenko, M. Lang, B. Wolf, L. Zherlitsyna, N. Auner, O. Shchegolikhina, Y. Pozdniakova, F. Schütz, P. Kopietz, and M. Kollar (2007). C. R. Chim. 10, 89–95.CrossRefGoogle Scholar
  51. 51.
    L. Zherlitsyna, N. Auner, M. Bolte, Y. Pozdniakova, O. Shchegolikhina, K. Lyssenko, V. Pashchenko, B. Wolf, M. Lang, F. Schütz, M. Kollar, F. Sauli, and P. Kopietz (2007). Eur. J. Inorg. Chem. 2007, 4827–4838.CrossRefGoogle Scholar
  52. 52.
    A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, A. V. Vologzhanina, G. S. Astakhov, E. I. Gutsul, E. S. Shubina, and M. M. Levitsky (2018). Cryst. Growth Des. 18, 2452–2457.CrossRefGoogle Scholar
  53. 53.
    A. Bilyachenko, M. Kulakova, A. Levitsky, A. Korlyukov, V. Khrustalev, A. Vologzhanina, A. Titov, P. Dorovatovskii, L. Shul’pina, F. Lamaty, X. Bantreil, B. Villemejeanne, and C. Ruiz (2007). ChemCatChem 9, 4437–4447.CrossRefGoogle Scholar
  54. 54.
    G. S. Astakhov, A. N. Bilyachenko, A. A. Korlyukov, M. M. Levitsky, L. S. Shul’pina, X. Bantreil, F. Lamaty, A. V. Vologzhanina, E. S. Shubina, P. V. Dorovatovskii, D. S. Nesterov, A. J. L. Pombeiro, and G. B. Shul’pin (2018). Inorg. Chem. 57, 11524–11529.CrossRefGoogle Scholar
  55. 55.
    G. S. Astakhov, A. N. Bilyachenko, M. M. Levitsky, A. A. Korlyukov, Y. V. Zubavichus, P. V. Dorovatovskii, V. N. Khrustalev, A. V. Vologzhanina, and E. S. Shubina (2018). Cryst. Growth Des. 18, 5377–5384.CrossRefGoogle Scholar
  56. 56.
    A. N. Kulakova, A. N. Bilyachenko, A. A. Korlyukov, J. Long, M. M. Levitsky, E. S. Shubina, Y. Guari, and J. Larionova (2018). Dalton Trans. 47, 6893–6897.CrossRefGoogle Scholar
  57. 57.
    A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul’pina, A. N. Kulakova, X. Bantreil, F. Lamaty, M. M. Levitsky, E. I. Gutsul, E. S. Shubina, and G. B. Shul’pin (2018). Inorg. Chem. 57, 528–534.CrossRefGoogle Scholar
  58. 58.
    A. N. Kulakova, A. N. Bilyachenko, V. N. Khrustalev, Y. V. Zubavichus, P. V. Dorovatovskii, L. S. Shul’pina, X. Bantreil, F. Lamaty, E. S. Shubina, M. M. Levitsky, and G. B. Shul’pin (2018). Catalysts 8, 484.CrossRefGoogle Scholar
  59. 59.
    A. N. Kulakova, A. N. Bilyachenko, M. M. Levitsky, V. N. Khrustalev, A. A. Korlyukov, Y. V. Zubavichus, P. V. Dorovatovskii, F. Lamaty, X. Bantreil, B. Villemejeanne, J. Martinez, L. S. Shul’pina, E. S. Shubina, E. I. Gutsul, I. A. Mikhailov, N. S. Ikonnikov, U. Y. S. Tsareva, and G. B. Shul’pin (2017). Inorg. Chem. 56, 15026–15040.CrossRefGoogle Scholar
  60. 60.
    A. N. Kulakova, A. A. Korlyukov, Y. V. Zubavichus, V. N. Khrustalev, X. Bantreil, L. S. Shul’pina, M. M. Levitsky, N. S. Ikonnikov, E. S. Shubina, F. Lamaty, A. N. Bilyachenko, and G. B. Shul’pin (2019). J. Organomet. Chem. 884, 17–28.CrossRefGoogle Scholar
  61. 61.
    G. Costa, A. Camus, and N. Marsich (1965). J. Inorg. Nucl. Chem. 27, 281–285.CrossRefGoogle Scholar
  62. 62.
    M. R. Malachowski and M. G. Davidson (1989). Inorg. Chim. Acta 162, 199–204.CrossRefGoogle Scholar
  63. 63.
    X.-G. Li, M.-M. Gao, and S. Weng Ng (2012). Di-μ-methanolato-κ O:O-bisbis(3-methyl-5-phenyl-1H-pyrazole-κN)(nitrato-κO)copper(II). Acta Cryst. E 68, 503.CrossRefGoogle Scholar
  64. 64.
    A. N. Bilyachenko, M. M. Levitsky, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul’pina, E. S. Shubina, and G. B. Shul’pin (2018). Organometallics 37, 168–171.CrossRefGoogle Scholar
  65. 65.
    G. R. Newkome, K. J. Theriot, V. K. Gupta, F. R. Fronczek, and G. R. Baker (1989). J. Org. Chem. 54, 1766–1769.CrossRefGoogle Scholar
  66. 66.
    C. J. Chandler, L. W. Deady, and J. A. Reiss (1981). J. Heterocycl. Chem. 18, 599–601.CrossRefGoogle Scholar
  67. 67.
    J. E. Stok, K. E. Slessor, A. J. Farlow, D. B. Hawkes, and J. J. De Voss Cytochrome P450cin (CYP176A1). in E. G. Hrycay and S. M. Bandiera (eds.), Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450 (Springer International Publishing, Cham, 2015), pp. 319–339.CrossRefGoogle Scholar
  68. 68.
    Kaurane diterpenes. Advances in research and application. (Scholarly Editions, Atlanta, 2011).Google Scholar
  69. 69.
    D. E. Metzler and C. M. Metzler, Biochemistry: The Chemical Reactions of Living Cells, 2nd ed., Vols. 1 and 2 (Academic Press, New York, 2003).Google Scholar
  70. 70.
    D. H. R. Barton (ed.), Reason and Imagination Reflections on Research in Organic Chemistry Selected Papers of Derek H R Barton (World Scientific, Singapore, World Scientific Series in 20th Century Chemistry 6, 1996).Google Scholar
  71. 71.
    A. Meissner and J. Walter (eds), Epigenetic Mechanisms in Cellular Reprogramming (Springer: Berlin, Epigenetics and Human Health, 2015).Google Scholar
  72. 72.
    A. N. Kulakova, V. N. Khrustalev, Y. V. Zubavichus, L. S. Shul’pina, E. S. Shubina, M. M. Levitsky, N. S. Ikonnikov, A. N. Bilyachenko, Y. N. Kozlov, and G. B. Shul’pin (2019). Catalysts 9, 154.CrossRefGoogle Scholar
  73. 73.
    A. N. Bilyachenko, A. A. Korlyukov, M. M. Levitskii, M. Y. Antipin, and B. G. Zavin (2007). Russ. Chem. Bull. 56, 543–545.CrossRefGoogle Scholar
  74. 74.
    M. Levitsky, B. Zavin, A. Bilyachenko, R. Morgunov, R. Kurganova, E. Kurganova, N. Ovanesyan, and E. Pol’shin (2008). Russ. Chem. Bull. 57, 1630–1632.CrossRefGoogle Scholar
  75. 75.
    A. N. Bilyachenko, M. M. Levitsky, A. I. Yalymov, A. A. Korlyukov, A. V. Vologzhanina, Y. N. Kozlov, L. S. Shul’pina, D. S. Nesterov, A. J. L. Pombeiro, F. Lamaty, X. Bantreil, A. Fetre, D. Liu, J. Martinez, J. Long, J. Larionova, Y. Guari, A. L. Trigub, Y. V. Zubavichus, I. E. Golub, O. A. Filippov, E. S. Shubina, and G. B. Shul’pin (2016). RSC Adv. 6, 48165–48180.CrossRefGoogle Scholar
  76. 76.
    A. N. Bilyachenko, A. A. Korlyukov, A. V. Vologzhanina, V. N. Khrustalev, A. N. Kulakova, J. Long, J. Larionova, Y. Guari, M. S. Dronova, U. S. Tsareva, P. V. Dorovatovskii, E. S. Shubina, and M. M. Levitsky (2017). Dalton Trans. 46, 12935–12949.CrossRefGoogle Scholar
  77. 77.
    A. N. Bilyachenko, M. S. Dronova, A. I. Yalymov, A. A. Korlyukov, L. S. Shul’pina, D. E. Arkhipov, E. S. Shubina, M. M. Levitsky, A. D. Kirilin, and G. B. Shul’pin (2013). Eur. J. Inorg. Chem. 2013, 5240–5246.CrossRefGoogle Scholar
  78. 78.
    A. A. Korlyukov, A. V. Vologzhanina, M. I. Buzin, N. V. Sergienko, B. G. Zavin, and A. M. Muzafarov (2016). Cryst. Growth Des. 16, 1968–1977.CrossRefGoogle Scholar
  79. 79.
    M. S. Dronova, A. N. Bilyachenko, A. I. Yalymov, Y. N. Kozlov, L. S. Shul’pina, A. A. Korlyukov, D. E. Arkhipov, M. M. Levitsky, E. S. Shubina, and G. B. Shul’pin (2014). Dalton Trans. 43, 872–882.CrossRefGoogle Scholar
  80. 80.
    B. G. Zavin, N. V. Sergienko, A. A. Korlyukov, V. D. Myakushev, and M. Y. Antipin (2008). Mendeleev Commun. 18, 76–77.CrossRefGoogle Scholar
  81. 81.
    M. S. Dronova, A. N. Bilyachenko, A. A. Korlyukov, D. E. Arkhipov, A. D. Kirilin, E. S. Shubina, G. M. Babakhina, and M. M. Levitskii (2013). Russ. Chem. Bull. 62, 1941–1943.CrossRefGoogle Scholar
  82. 82.
    M. R. Churchill, C. H. Lake, S. -H. L. Chao, O. T. Beachley (1993) J. Chem. Soc., Chem. Commun. 1577–1578.Google Scholar
  83. 83.
    A. Decken, J. Passmore, and X. Wang (2006). Angew. Chem. Int. Ed. 45, 2773–2777.CrossRefGoogle Scholar
  84. 84.
    R. D. Ernst, A. Glöckner, A. M. Arif, in Z. Kristallogr (eds.), New Cryst. Struct. (2007), pp. 333.Google Scholar
  85. 85.
    A. Decken, F. A. LeBlanc, J. Passmore, and X. Wang (2006). Eur. J. Inorg. Chem. 2006, 4033–4036.CrossRefGoogle Scholar
  86. 86.
    E. A. Meyer, R. K. Castellano, and F. Diederich (2003). Angew. Chem. Int. Ed. 42, 1210–1250.CrossRefGoogle Scholar
  87. 87.
    M. M. Levitsky, A. N. Bilyachenko, E. S. Shubina, J. Long, Y. Guari, and J. Larionova (2019) Catalysts (in preparation).Google Scholar
  88. 88.
    K. Wei, N. Liu, L. Li, and S. Zheng (2015). RSC Adv. 5, 77274–77287.CrossRefGoogle Scholar
  89. 89.
    T. Sugiyama, H. Shiba, M. Yoshikawa, H. Wada, A. Shimojima, and K. Kuroda (2019). Chem. Eur. J. 25, 2764–2772.CrossRefGoogle Scholar
  90. 90.
    M. Yoshikawa, H. Shiba, H. Wada, A. Shimojima, and K. Kuroda (2018). Bull. Chem. Soc. Jpn. 91, 747–753.CrossRefGoogle Scholar
  91. 91.
    M. Yoshikawa, H. Shiba, M. Kanezashi, H. Wada, A. Shimojima, T. Tsuru, and K. Kuroda (2017). RSC Adv. 7, 48683–48691.CrossRefGoogle Scholar
  92. 92.
    Y. Yi and S. Zheng (2014). RSC Adv. 4, 28439–28450.CrossRefGoogle Scholar
  93. 93.
    M. Yoshikawa, H. Ikawa, H. Wada, A. Shimojima, and K. Kuroda (2018). Chem. Lett. 47, 1203–1206.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mikhail M. Levitsky
    • 1
  • Yan V. Zubavichus
    • 2
  • Alexander A. Korlyukov
    • 1
    • 3
  • Victor N. Khrustalev
    • 4
  • Elena S. Shubina
    • 1
  • Alexey N. Bilyachenko
    • 1
    • 4
    Email author
  1. 1.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  3. 3.Pirogov Russian National Research Medical UniversityMoscowRussia
  4. 4.Peoples’ Friendship, University of Russia, (RUDN University)MoscowRussia

Personalised recommendations