Advertisement

Multifunctional Applications of Microwave-Assisted Biogenic TiO2 Nanoparticles

  • K. KarthikEmail author
  • S. Vijayalakshmi
  • Anukorn Phuruangrat
  • V. Revathi
  • Urvashi Verma
Original Paper
  • 17 Downloads

Abstract

TiO2 nanoparticles were prepared by a microwave-assisted green method using Andrographis paniculata as fuel. XRD, Raman, FESEM with EDS, TEM and UV-DRS have been used for characterization of TiO2 nanoparticles. XRD exhibits a tetragonal structure with the average crystallite size of 19 nm. From Raman studies, the peaks at 196 (Eg), 395 (B1g), 514 (A1g) and 639 (Eg) are revealing the anatase phase of TiO2. FESEM and TEM images confirm the nanoparticles with average particle size are 25 nm. Optical bandgap of biogenic TiO2 nanoparticles is 3.27 eV. Photoluminescence spectrum of TiO2 nanoparticles showed blue and green emissions. The photocatalytic degradation study of biogenic TiO2 nanoparticles was investigated against the Rose Bengal (RB) dye under UV light irradiation. Microwave-assisted green synthesized TiO2 nanoparticles showed an excellent photocatalytic activity (RB dye). Antibacterial activity (disc diffusion method) of microwave-assisted biogenic TiO2 nanoparticles is studied against foodborne pathogens. TiO2 exhibits anti-lung cancer (human lung cancer A549: IC50: 24.96 µg/mL) activity along with biocompatibility.

Keywords

Microwave-assisted green method Andrographis paniculata Photocatalytic activity Antibacterial and anticancer activities 

Notes

Supplementary material

10876_2019_1556_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1179 kb)

References

  1. 1.
    T. Ishii, T. Takashima, and K. Otani (2011). Progr. Photovolt. Res. Appl. 19, (2), 170–179.CrossRefGoogle Scholar
  2. 2.
    K. A. Ali, A. Z. Abdullah, and A. R. Mohamed (2017). Appl. Catal. A Gen. 537, 111–120.CrossRefGoogle Scholar
  3. 3.
    L. G. Devi and S. G. Kumar (2012). Appl. Surf. Sci. 261, 137–146.CrossRefGoogle Scholar
  4. 4.
    A. Charanpahari, S. Umare, and R. Sasikala (2013). Appl. Surf. Sci. 282, 408–414.CrossRefGoogle Scholar
  5. 5.
    L. G. Devi, B. N. Murthy, and S. G. Kumar (2009). Chemosphere 76, (8), 1163–1166.CrossRefGoogle Scholar
  6. 6.
    S. G. Kumar and K. K. Rao (2017). Appl. Surf. Sci. 391, 124–148.CrossRefGoogle Scholar
  7. 7.
    S. Liu, E. Guo, and L. Yin (2012). J. Mater. Chem. 22, (11), 5031–5041.CrossRefGoogle Scholar
  8. 8.
    S. Marimuthu, A. A. Rahuman, C. Jayaseelan, A. V. Kirthi, T. Santhoshkumar, K. Velayutham, and C. Siva (2013). Asian Pac. J Trop. Med. 6, 682–688.CrossRefGoogle Scholar
  9. 9.
    T. Santhoshkumar, A. A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A. V. Kirthi, and S. K. Kim (2014). Asian Pac. J Trop. Med. 7, 968–976.CrossRefGoogle Scholar
  10. 10.
    K. G. Rao, C. H. Ashok, K. V. Rao, C. S. Chakra, and P. Tambur (2015). Asian Pac. J. Trop. Med. 2, 28–34.Google Scholar
  11. 11.
    S. Ambika and M. Sundrarajan (2016). J. Mol. Liq. 221, 986–992.CrossRefGoogle Scholar
  12. 12.
    T. Santhoshkumar, A. A. Rahuman, A. V. Kirthi, and S. K. Kim (2013). Asian Pac. J Trop. Med. 5, 245–256.Google Scholar
  13. 13.
    R. D. A. Jalill, R. S. Nuaman, and A. N. Abd (2016). World Sci. News 49, 204–222.Google Scholar
  14. 14.
    A. Chatterjee, M. Ajantha, A. Talekar, N. Revathy, and J. Abraham (2017). Mater. Lett. 9, 95–99.Google Scholar
  15. 15.
    V. Patidar and P. Jain (2017). Int. Res. J. Eng. Technol. 4, 470–473.Google Scholar
  16. 16.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2017). J. Mater. Sci: Mater. Electron. 28, 11420–11429.Google Scholar
  17. 17.
    T. Mosmann (1983). J. Immunol. Methods 65, 55–63.CrossRefGoogle Scholar
  18. 18.
    G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, A. A. Zahir, and K. Velayutham (2012). Spectrochim. Acta Mol. Biomol. Spectrosc. A 91, 23–29.CrossRefGoogle Scholar
  19. 19.
    A. A. Kashale, K. P. Gattu, K. Ghule, V. H. Ingole, S. Dhanayat, R. Sharma, J. Y. Chang, and A. V. Ghule (2016). Compos. Part B 99, 297–303.CrossRefGoogle Scholar
  20. 20.
    G. V. Khade, M. B. Suwarnkar, N. L. Gavade, and K. M. Garadkar (2015). J. Mater. Sci. Mater. Electron. 26, 3309–3318.CrossRefGoogle Scholar
  21. 21.
    Velu Manikandan, Palanivel Velmurugan, Palaniyappan Jayanthi, Jung-Hee Park, Woo-Suk Chang, Yool-Jin Park, Min Cho, and Oh Byung-Taek (2018). Res. Chem. Intermed. 4, (44), 2489–2502.CrossRefGoogle Scholar
  22. 22.
    C. Karunakaran, P. Navamani, and P. Gomathisankar (2015). J. Iran. Chem. Soc. 12, 75–83.CrossRefGoogle Scholar
  23. 23.
    J. Wang, R. Li, Z. Zhang, W. Sun, R. Xu, Y. Xie, Z. Xing, and X. Zhang (2008). Appl. Catal. A: Gen. 334, 227–232.CrossRefGoogle Scholar
  24. 24.
    M. Umadevi and A. Jegatha Christy (2013). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 133–137.CrossRefGoogle Scholar
  25. 25.
    R. Katwal, H. Kaur, G. Sharma, Mu Naushad, and D. Pathania (2015). J. Ind. Eng. Chem. 31, 173–184.CrossRefGoogle Scholar
  26. 26.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2018). Mater. Res. Innov.  https://doi.org/10.1080/14328917.2018.1475443.Google Scholar
  27. 27.
    S. Subhapriya and P. Gomathipriya (2018). Microb. Pathog. 116, 215–220.CrossRefGoogle Scholar
  28. 28.
    M. Chandra Sekhar, B. PurusottamReddy, K. Mallikarjuna, G. Shanmugam, C.-H. Ahn, and S.-H. Park (2018). Mater. Res. Express 5, 015024–015032.CrossRefGoogle Scholar
  29. 29.
    S. Singh Surah, S. Sirohi, R. Nain, and G. Kumar (2018). AIP Conf. Proc. 1932, 030038–030041.  https://doi.org/10.1063/1.5024188.CrossRefGoogle Scholar
  30. 30.
    K. Murugan, D. Dinesh, K. Kavithaa, M. Paulpandi, T. Ponraj, M. Saleh Alsalhi, S. Devanesan, J. Subramaniam, R. Rajaganesh, H. Wei, S. Kumar, M. Nicoletti, and G. Benelli (2016). Parasitol Res. 115, 1085–1096.CrossRefGoogle Scholar
  31. 31.
    Jitendra Bahadur, Shraddha Agrawal, Vinay Panwar, Azra Parveen, and Kaushik Pal (2016). Macromol. Res. 24, 488–493.CrossRefGoogle Scholar
  32. 32.
    S. Jafarirad, M. Mehrabi, and B. Divband (2016). Kosari-Nasab. Mater. Sci. Eng: C 59, (14), 296–302.CrossRefGoogle Scholar
  33. 33.
    M. Malakootian, M. A. Gharaghani, A. Dehdarirad, M. Khatami, M. Ahmadian, M. Heidari, and H. Mahdizadeh (2019). J Mol. Struct. 1176, 766–776.CrossRefGoogle Scholar
  34. 34.
    H. Q. Alijani, S. Pourseyedi, M. T. Mahani, and M. Khatami (2019). J Mol. Struct. 1175, 214–218.CrossRefGoogle Scholar
  35. 35.
    M. Khatami, I. Sharifi, M. A. L. Nobre, N. Zafarnia, and M. R. Aflatoonian (2018). Green Chem. Lett. Rev. 11, (2), 125–134.CrossRefGoogle Scholar
  36. 36.
    A. Ivask, T. Titma, M. Vishnapuu, H. Vija, A. Kakinen, M. Sihtmae, S. Pokhrel, L. Madler, M. Heinlaan, V. Kis, R. Shimmo, and A. Kahru (2015). Curr. Top. Med. Chem. 15, 1914–1929.CrossRefGoogle Scholar
  37. 37.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2019). J. Photochem. Photobiol. B Biol. 190, 8–20.CrossRefGoogle Scholar
  38. 38.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabu Kumar, and S. Sivaramakrishnan (2019). Mater. Technol.  https://doi.org/10.1080/10667857.2019.1574963.Google Scholar
  39. 39.
    V. Revathi and K. Karthik (2018). J. Mater. Sci Mater. Electron. 29, 18519–18530.CrossRefGoogle Scholar
  40. 40.
    K. Karthik, M. Madhukara Naik, M. Shashank, M. Vinuth, and V. Revathi (2019). J. Clust. Sci. 30, 311–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of MicrobiologyShrimati Indira Gandhi CollegeTiruchirappalliIndia
  3. 3.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  4. 4.Department of PhysicsJaya College of Arts and ScienceChennaiIndia
  5. 5.Department of BotanyD. S. B. Campus, Kumaun UniversityNainitalIndia

Personalised recommendations