Advertisement

Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity

  • Yu Gao
  • Mariadoss Arokia Vijaya Anand
  • Vinayagam Ramachandran
  • Venkatachalam Karthikkumar
  • Vijayakumar Shalini
  • Sankaran Vijayalakshmi
  • David ErnestEmail author
Original Paper
  • 25 Downloads

Abstract

The present study was aimed to green synthesis and characterization of zinc oxide nanoparticles (ZnONPs) from Aspergillus niger, which was evaluated for their antioxidant, antimicrobial and anticancer activity. The synthesised NPs were characterized by various analytical techniques such as UV–VIS Spectroscopy, FT-IR, XRD, DLS, SEM, and TEM. It was confirmed through the UV–Vis spectrophotometer; corresponding peaks were identified at 390 nm. The green synthesised ZnONPs were characterized by FT-IR studies to reveal the functional group attributed to the formation of ZnONPs. Morphological size of ZnONPs was 80–130 nm found through characterization by DLS, SEM, and TEM. Furthermore, the green synthesised ZnONPs showed potent antioxidant (ABTS and DPPH assay) antimicrobial activity against human pathogenic bacterial strains such as Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes. In addition, the green synthesised ZnONPs showed the dose-dependent cytotoxicity and apoptotic features in human hepatocellular carcinoma cells (HepG2). The overall findings of the study suggested that A. niger had a potential for the biosynthesis of ZnONPs as an alternative biomaterial for future therapeutic application as an antioxidant, antimicrobial and anticancer compound.

Keywords

Aspergillus niger Zinc oxide nanoparticles HepG2 cell lines Antioxidant Antimicrobial Anticancer 

Notes

References

  1. 1.
    J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah (2018). Beilstein J. Nanotechnol. 9, 1050–1074.  https://doi.org/10.3762/bjnano.9.98.CrossRefGoogle Scholar
  2. 2.
    O. Bondarenko, A. Ivask, A. Kakinen, I. Kurvet, and A. Kahru (2013). PLoS ONE 8, e64060.  https://doi.org/10.1371/journal.pone.0064060.CrossRefGoogle Scholar
  3. 3.
    A. Nejabatdoust, A. Salehzadeh, H. Zamani, and Z. M. Shoeili (2019). J. Clust. Sci. 30, 329–336.  https://doi.org/10.1007/s10876-018-01487-3.CrossRefGoogle Scholar
  4. 4.
    P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya (2017). Drug Discov. Today 22, 1825–1834.  https://doi.org/10.1016/j.drudis.2017.08.006.CrossRefGoogle Scholar
  5. 5.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. A. Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog. 104, 268–277.  https://doi.org/10.1016/j.micpath.2017.01.029.CrossRefGoogle Scholar
  6. 6.
    C. Paulussen, J. E. Hallsworth, S. Alvarez-Perez, W. C. Nierman, P. G. Hamill, and D. Blain (2017). Microb. Biotechnol. 10, 296–322.  https://doi.org/10.1111/1751-7915.12367.CrossRefGoogle Scholar
  7. 7.
    O. S. Zmeili and A. O. Soubani (2007). QJM Int. J. Med. 100, 317–334.  https://doi.org/10.1093/qjmed/hcm035.CrossRefGoogle Scholar
  8. 8.
    E. Schuster, N. Dunn-Coleman, J. Frisvad, and P. Van Dijck (2002). Appl. Microbiol. Biotechnol. 59, 426–435.  https://doi.org/10.1007/s00253-002-1032-6.CrossRefGoogle Scholar
  9. 9.
    H. L. Holland (1997). Adv. Appl. Microbiol. 44, 125–165.CrossRefGoogle Scholar
  10. 10.
    A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Duran, and M. K. Rai (2008). J. Biobased Mater. 2, 243–247.  https://doi.org/10.1166/jbmb.2008.401.CrossRefGoogle Scholar
  11. 11.
    K. Kathiresan, N. M. Alikunhi, S. Pathmanaban, A. Nabikhan, and S. Kandasamy (2010). Can. J. Microbiol. 56, 1050–1059.  https://doi.org/10.1139/W10-094.CrossRefGoogle Scholar
  12. 12.
    R. Re, N. Pellegrini, A. Proteggente, M. Yang, and C. Rice-Evans (1999). Free Radic. Biol. Med. 26, 1231–1237.CrossRefGoogle Scholar
  13. 13.
    K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura (1992). J. Agric. Food Chem. 40, 945–948.CrossRefGoogle Scholar
  14. 14.
    J. F. Hernandez-Sierra, F. Ruiz, D. C. Pena, F. Martinez-Gutierrez, A. E. Martinez, and A. D. Guillen (2008). Nanomed. Nanotechnol. 4, 237–240.  https://doi.org/10.1016/j.nano.2008.04.005.CrossRefGoogle Scholar
  15. 15.
    S. H. Kim, H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol. 39, 77–85.  https://doi.org/10.5897/AJMR2016.7908.Google Scholar
  16. 16.
    A. Alvarez-Ordonez, O. Alvseike, M. K. Omer, E. Heir, L. Axelsson, A. Holck, and M. Prieto (2013). Int. J. Food Microbiol. 161, 220–230.  https://doi.org/10.1016/j.ijfoodmicro.2012.12.008.CrossRefGoogle Scholar
  17. 17.
    M. B. Hansen, S. E. Nielsen, and K. Berg (1989). J. Immunol. Methods 119, 203–210.  https://doi.org/10.1016/0022-1759(89)90397-9.CrossRefGoogle Scholar
  18. 18.
    S. S. M. Hassan, W. I. M. El-Azab, H. R. Ali, and M. S. M. Mansour (2015). Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 045012.  https://doi.org/10.1088/2043-6262/6/4/045012.CrossRefGoogle Scholar
  19. 19.
    P. Jamdagni, P. Khatri, and J. S. Rana (2018). King Saud Univ. Sci. 30, 168–175.  https://doi.org/10.1016/j.jksus.2016.10.002.CrossRefGoogle Scholar
  20. 20.
    S. M. Dhoble and N. S. Kulkarni (2016). Sch. Acad. J. Biosci. 11, 1022–1031.  https://doi.org/10.21276/sajb.2016.4.11.9.Google Scholar
  21. 21.
    D. Hernndez-Melendez, E. Salas-Tellez, A. Zavala-Franco, G. Tellez, A. Mendez-Albores, and A. Vazquez-Duran (2018). Materials 11, 1265.  https://doi.org/10.3390/ma11081265.CrossRefGoogle Scholar
  22. 22.
    V. N. Kalpana, B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. Devi Rajeswari (2018). OpenNano 3, 48–55.  https://doi.org/10.1016/j.onano.2018.06.001.CrossRefGoogle Scholar
  23. 23.
    E. E. Elemike, D. C. Onwudiwe, O. E. Fayemi, A. C. Ekennia, E. E. Ebenso, and L. R. Tiedt (2017). J. Clust. Sci. 28, 309–330.  https://doi.org/10.1007/s10876-016-1087-7.CrossRefGoogle Scholar
  24. 24.
    L. L. Duffy, M. J. Osmond-McLeod, J. Judy, and T. King (2018). Food Control 92, 293–300.  https://doi.org/10.1016/j.foodcont.2018.05.008.CrossRefGoogle Scholar
  25. 25.
    P. Kalyani, B. K. Lakshmi, G. Dinesh Reddy, and K. P. Hemalatha (2018). Int. J. Curr. Res. 7, 788–791.Google Scholar
  26. 26.
    A. Manke, L. Wang, and Y. Rojanasakul (2013). Biomed. Res. Int..  https://doi.org/10.1155/2013/942916.Google Scholar
  27. 27.
    T. O. Ajiboye, A. O. Mohammed, S. A. Bello, I. I. Yusuf, O. B. Ibitoye, H. F. Muritala, and I. B. Onajobi (2016). Microb. Pathog. 95, 208–215.  https://doi.org/10.1016/j.micpath.2016.03.011.CrossRefGoogle Scholar
  28. 28.
    R. Sinha, R. Karan, A. Sinha, and S. K. Khare (2011). Bioresour. Technol. 102, 1516–1520.  https://doi.org/10.1016/j.biortech.2010.07.117.CrossRefGoogle Scholar
  29. 29.
    K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar (2018). J. Infect. Public Health 11, 463–471.  https://doi.org/10.1016/j.jiph.2017.10.006.CrossRefGoogle Scholar
  30. 30.
    Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, and H. Wang (2014). ACS Appl. Mater. Interfaces 6, 2791–2798.  https://doi.org/10.1021/am4053317.CrossRefGoogle Scholar
  31. 31.
    A. Aditya, S. Chattopadhyay, D. Jha, H. K. Gautam, S. Maiti, and M. Ganguli (2018). ACS Appl. Mater. Interfaces 10, 15401–15411.  https://doi.org/10.1021/acsami.8b01463.CrossRefGoogle Scholar
  32. 32.
    T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav (2016). Front. Microbiol. 7, 1831.  https://doi.org/10.3389/fmicb.2016.01831.CrossRefGoogle Scholar
  33. 33.
    G. Baskar, J. Chandhuru, K. S. Fahad, A. S. Praveen, M. Chamundeeswari, and T. Muthukumar (2015). J. Mater. Sci. Mater. Med. 26, 43.  https://doi.org/10.1007/s10856-015-5380-z.CrossRefGoogle Scholar
  34. 34.
    S. Majeed, M. Danish, and F. S. Norazmi (2018). Adv. Sci. Eng. Med. 1, 551–556.  https://doi.org/10.14302/issn.2377-2549.jndc-18-2116.CrossRefGoogle Scholar
  35. 35.
    K. S. Siddiqi, A. Ur Rahman, and A. Husen (2018). Nanoscale Res Lett. 13, 141.  https://doi.org/10.1186/s11671-018-2532-3.CrossRefGoogle Scholar
  36. 36.
    M. Arakha, J. Roy, P. S. Nayak, B. Mallick, and S. Jha (2017). Free Radic. Biol. Med. 110, 42–53.  https://doi.org/10.1016/j.freeradbiomed.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Gao
    • 1
  • Mariadoss Arokia Vijaya Anand
    • 2
  • Vinayagam Ramachandran
    • 2
  • Venkatachalam Karthikkumar
    • 3
  • Vijayakumar Shalini
    • 2
  • Sankaran Vijayalakshmi
    • 2
  • David Ernest
    • 2
    Email author
  1. 1.Department of General SurgeryTianjin First Central HospitalTianjinChina
  2. 2.Department of BiotechnologyThiruvalluvar UniversitySerkadu, VelloreIndia
  3. 3.Department of Pharmacology and Therapeutics, College Of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates

Personalised recommendations