Advertisement

Polysorbate 80 Coated Gold Nanoparticle as a Drug Carrier for Brain Targeting in Zebrafish Model

  • Kalaiarasi Sivaji
  • Rajaretinam Rajesh KannanEmail author
Original Paper
  • 19 Downloads

Abstract

The development of biocompatible and promising drug delivery system is needed to enhance drug carrier to cross the blood–brain barrier to treat neurodegenerative diseases. The aim of the present study is to address colloidal gold nanoparticle functionalized with polysorbate 80 and Poly Ethylene Glycol, capabilities to overcome the blood–brain barrier for diagnostics and treatment of Alzheimer’s disease. The size of the gold nanoparticles ranges between 70 and 90 nm with monodispersity. The gold nanoparticle conjugated with Donepezil (GNPD) was confirmed and increased acetylcholinesterase inhibition activity of 30–38% was observed in the zebrafish brain. GNPD exhibited increased retention of gold nanoparticle in the brain with an increased particle concentration of 52% in day 1 and 21.74% on day 15. Behavioral analysis of colloidal gold nanoparticle treated zebrafish showed freezing and tremor swim pattern, while the GNPD treated zebrafish acquiesce with untreated zebrafish. Histological sections of colloidal gold nanoparticle treated zebrafish brain showed focal aggregation of cells in pia matter, while GNPD remained similar to the native zebrafish brain section. Thus, a possible biocompatible nanocarrier that can cross the blood–brain barrier and deliver the drug in the brain has been synthesized and validated.

Keywords

Colloidal gold nanoparticle Acetylcholinesterase Donepezil Zebrafish brain histology 

Abbreviations

CIL

Central nucleus of inferior lobe

DIL

Diffuse nucleus of inferior lobe

GNP

Gold nanoparticles

GNPD

Gold nanoparticles with donepezil

PGZ

Periventricular Gray zone

TLa

Lateral torus

Notes

Acknowledgements

Our sincere thanks to Dr. T. Y. Suman and Dr. Radhika Rajasree S. R., for their technical support on ICPMS facility of Centre for Ocean Research, Sathyabama Institute of Science and Technology. Special thanks to Dr. Suraiya Saleem (DBT-RA) for the diligent proofreading of this article.

Funding

This work was supported by Department of Biotechnology, India under research Grants No. BT/Bio-CARe/04/10082/2013-14 and BT/PR6765/NNT/28/618/2012.

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    G. Paciotti, D. Kingston, and L. Tamarkin (2006). Drug. Dev. Res..  https://doi.org/10.1002/ddr.20066.Google Scholar
  2. 2.
    M. Edmundson, M. Capeness, and L. Horsfall (2014). New Biotechnol..  https://doi.org/10.1016/j.nbt.2014.03.004.Google Scholar
  3. 3.
    X. Wang, G. Tao, and Y. Meng (2009). Microchim. Acta.  https://doi.org/10.1007/s00604-009-0225-4.Google Scholar
  4. 4.
    T. Cui, J. Liang, H. Chen, et al. (2017). ACS Appl. Mater. Interfaces.  https://doi.org/10.1021/acsami.6b16669.Google Scholar
  5. 5.
    J. Qian, S. Ruan, X. Cao, et al. (2014). J. Colloid Interface Sci..  https://doi.org/10.1016/j.jcis.2014.08.059.Google Scholar
  6. 6.
    J. Kreuter, V. Petrov, D. Kharkevich, and R. Alyautdin (1997). J. Control. Release.  https://doi.org/10.1016/s0168-3659(97)00061-8.Google Scholar
  7. 7.
    S. Wohlfart, S. Gelperina, and J. Kreuter (2012). J. Control. Release.  https://doi.org/10.1016/j.jconrel.2011.08.017.Google Scholar
  8. 8.
    L. Hebert, P. Scherr, J. Bienias, D. Bennett, and D. Evans (2003). Arch. Neurol..  https://doi.org/10.1001/archneur.60.8.1119.Google Scholar
  9. 9.
    M. Colovic, D. Krstic, T. Lazarevic-Pasti, A. Bondzic, and V. Vasic (2013). Curr. Neuropharmacol..  https://doi.org/10.2174/1570159x11311030006.Google Scholar
  10. 10.
    H. Sugimoto, H. Ogura, Y. Arai, Y. Iimura, and Y. Yamanishi (2002). The. Jpn. J. Pharmacol..  https://doi.org/10.1254/jjp.89.7.Google Scholar
  11. 11.
    P. J. Tiseo, K. Foley, and L. T. Friedhoff (2002). Br. J. Clin. Pharmacol..  https://doi.org/10.1046/j.1365-2125.1998.0460s1056.x.Google Scholar
  12. 12.
    B. Davis (2012). Alzheimer’s Dement..  https://doi.org/10.1016/j.jalz.2012.05.301.Google Scholar
  13. 13.
    K. Dooley, A. Davidson, and L. Zon (2005). Dev. Biol..  https://doi.org/10.1016/j.ydbio.2004.09.004.Google Scholar
  14. 14.
    B. Bhushan, S. Nandhagopal, R. Kannan, and P. Gopinath (2016). ChemistrySelect.  https://doi.org/10.1002/slct.201600736.Google Scholar
  15. 15.
    A. Verkerk and C. Remme (2012). Front. Physiol..  https://doi.org/10.3389/fphys.2012.00255.Google Scholar
  16. 16.
    S. Patibandla, Y. Zhang, A. Tohari, et al. (2018). J. Appl. Toxicol..  https://doi.org/10.1002/jat.3628.Google Scholar
  17. 17.
    B. Geffroy, C. Ladhar, S. Cambier, M. Treguer-Delapierre, D. Brèthes, and J. Bourdineaud (2011). Nanotoxicology.  https://doi.org/10.3109/17435390.2011.562328.Google Scholar
  18. 18.
    R. Griffitt, K. Hyndman, N. Denslow, and D. Barber (2008). Toxicol. Sci..  https://doi.org/10.1093/toxsci/kfn256.Google Scholar
  19. 19.
    R. Griffitt, R. Weil, K. Hyndman, et al. (2007). Environ. Sci. Technol..  https://doi.org/10.1021/es071235e.Google Scholar
  20. 20.
    J. Zhou, J. Ralston, R. Sedev, and D. Beattie (2009). J. Colloid Interface Sci..  https://doi.org/10.1016/j.jcis.2008.12.002.Google Scholar
  21. 21.
    S. Kalaiarasi, P. Arjun, S. Nandhagopal, et al. (2016). J. Appl. Biomed..  https://doi.org/10.1016/j.jab.2016.01.004.Google Scholar
  22. 22.
    C. Collymore, S. Rasmussen, and R. Tolwani (2013). J. Vis. Exp..  https://doi.org/10.3791/50691.Google Scholar
  23. 23.
    OECD Guidelines for the Testing of Chemicals, Section 2.  https://doi.org/10.1787/20745761.
  24. 24.
    R. Rajesh Kannan and S. Prakash Vincent (2012). Ann. Neurosci..  https://doi.org/10.5214/ans.0972.7531.180403.Google Scholar
  25. 25.
    S. Sangabathuni, R. Murthy, P. Chaudhary, B. Subramani, S. Toraskar, and R. Kikkeri (2017). Sci. Rep..  https://doi.org/10.1038/s41598-017-03350-3.Google Scholar
  26. 26.
    A. Menke, J. Spitsbergen, A. Wolterbeek, and R. Woutersen (2011). Toxicol. Pathol..  https://doi.org/10.1177/0192623311409597.Google Scholar
  27. 27.
    I. Hussain, S. Graham, Z. Wang, et al. (2005). J. Am. Chem. Soc..  https://doi.org/10.1021/ja055321v.Google Scholar
  28. 28.
    V. Senichev and V. Tereshatov, Simple Solvent Characteristics. Handbook of Solvents, (2014), pp. 117–149.  https://doi.org/10.1016/b978-1-895198-64-5.50006-4.
  29. 29.
    J. Cheng, B. Teply, I. Sherifi, et al. (2007). Biomaterials.  https://doi.org/10.1016/j.biomaterials.2006.09.047.Google Scholar
  30. 30.
    Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, and X. Jiang (2010). J. Am. Chem. Soc..  https://doi.org/10.1021/ja1028843.Google Scholar
  31. 31.
    W. Sun, C. Xie, H. Wang, and Y. Hu (2004). Biomaterials 25, (15), 3065–3071.  https://doi.org/10.1016/j.biomaterials.2003.09.087.CrossRefGoogle Scholar
  32. 32.
    Y. Chen, Y. Hung, I. Liau, and G. Huang (2009). Nanoscale Res. Lett..  https://doi.org/10.1007/s11671-009-9334-6.Google Scholar
  33. 33.
    H. Huo, Y. Gao, Y. Wang, et al. (2015). J. Colloid Interface Sci..  https://doi.org/10.1016/j.jcis.2015.01.043.Google Scholar
  34. 34.
    G. Borchard, K. Audus, F. Shi, and J. Kreuter (1994). Int. J. Pharm..  https://doi.org/10.1016/0378-5173(94)90372-7.Google Scholar
  35. 35.
    B. Chithrani, A. Ghazani, and W. Chan (2006). Nano Lett..  https://doi.org/10.1021/nl052396o.Google Scholar
  36. 36.
    T. Kosasa, Y. Kuriya, K. Matsui, and Y. Yamanishi (1999). Eur. J. Pharmacol..  https://doi.org/10.1016/s0014-2999(99)00741-4.Google Scholar
  37. 37.
    C. Park, S. Kim, W. Choi, et al. (1996). Planta Med..  https://doi.org/10.1055/s-2006-957926.Google Scholar
  38. 38.
    A. Dedeh, A. Ciutat, M. Treguer-Delapierre, and J. Bourdineaud (2014). Nanotoxicology.  https://doi.org/10.3109/17435390.2014.889238.Google Scholar
  39. 39.
    N. Orieux, S. Cambier, P. Gonzalez, et al. (2011). Ecotoxicol. Environ..  https://doi.org/10.1016/j.ecoenv.2011.01.008.Google Scholar
  40. 40.
    S. de Lima, Y. Koriyama, T. Kurimoto, et al. (2012). Proc. Natl. Acad. Sci..  https://doi.org/10.1073/pnas.1119449109.Google Scholar
  41. 41.
    A. Stewart, J. Cachat, K. Wong, et al. (2010). Behav. Process..  https://doi.org/10.1016/j.beproc.2010.07.009.Google Scholar
  42. 42.
    R. Blaser, L. Chadwick, and G. McGinnis (2010). Behav. Brain Res..  https://doi.org/10.1016/j.bbr.2009.11.009.Google Scholar
  43. 43.
  44. 44.
    I. Zhdanova, S. Wang, O. Leclair, and N. Danilova (2001). Brain Res..  https://doi.org/10.1016/s0006-8993(01)02444-1.Google Scholar
  45. 45.
    C. Maximino, T. de Brito, A. da Silva Batista, A. Herculano, S. Morato, and A. Gouveia (2010). Behav. Brain Res..  https://doi.org/10.1016/j.bbr.2010.05.031.Google Scholar
  46. 46.
    R. Blaser and D. Rosemberg (2012). PLoS ONE..  https://doi.org/10.1371/journal.pone.0036931.Google Scholar
  47. 47.
    E. Perry, B. Tomlinson, G. Blessed, K. Bergmann, P. Gibson, and R. Perry (1978). Br. Med. J..  https://doi.org/10.1136/bmj.2.6150.1457.Google Scholar
  48. 48.
    J. Tiedeken and J. Ramsdell (2009). Environ. Health Perspect..  https://doi.org/10.1289/ehp.11685.Google Scholar
  49. 49.
    N. Dayal, M. Thakur, P. Patil, D. Singh, G. Vanage, and D. Joshi (2016). J. Nanopart. Res..  https://doi.org/10.1007/s11051-016-3549-0.Google Scholar
  50. 50.
    M. Wullimann, B. Rupp, and H. Reichert, Neuroanatomy of the Zebrafish Brain (1996).  https://doi.org/10.1007/978-3-0348-8979-7.
  51. 51.
    N. Karoubi, R. Segev, and M. Wullimann (2016). Front. Neuroanat..  https://doi.org/10.3389/fnana.2016.00106.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, School of Chemical and BioengineeringSathyabama Institute of Science and Technology (Deemed to be University)ChennaiIndia

Personalised recommendations