Advertisement

Characterization, Antitumor and Antibacterial Potentials of Extracellular Pigment-Mediated Silver Nanoparticles Produced from Penicillium vinaceum AUMC 9402; Green Approach

  • Heba I. Abo-ElmagdEmail author
  • Manal M. Housseiny
Original Paper

Abstract

This study aimed to a rapid, eco-friendly and low-cost method for green synthesis of pigment mediated silver nanoparticles by Penicillium vinaceum AUMC 9402 (Pp–AgNPs) as an alternative to chemical procedures. Pp–AgNPs were subjected to microscopic and spectrophotometric analysis to determine its shape and size as TEM, UV–Visible Spectrophotometer, XRD, FTIR and DLS. The TEM analysis has revealed the spherical shape of Pp–AgNPs with size ranged between 8.2 and 14.9 nm with the mean of 10.6 nm. Thermal stability of Pp–AgNPs was also studied by TGA and DSC analysis which revealed high thermal stability of theses nanoparticles. Moreover, Pp–AgNPs have been evaluated for their effect on the growth of some +ve and −ve bacterial strains as Staphylococcus aureus ATCC 6538, Bacillus subtilis NCTC 10400, Pseudomonas aeruginosa ATCC-10145 and Escherichia coli ATCC 8739. Results revealed that Pp–AgNPs significantly have inhibitory effect on the tested bacteria. Additionally, the antitumor effect of Pp–AgNPs was also studied and the results revealed that these particles can be used as a promising antitumor agent.

Keywords

Penicillium vinaceum Pp–AgNPs Characterization Antibacterial Antitumor 

Notes

References

  1. 1.
    J. R. Celestino, L. E. Carvalho, M. P. Lima, A. M. Lima, M. M. Ogusku, and J. V. B. Souza (2014). Proc. Biochem. 49, 569–575.CrossRefGoogle Scholar
  2. 2.
    S. A. Carvalho, J. V. Coelho, and J. A. Takahashi (2010). Food Sci. Technol. Inter. 16, 315–320.CrossRefGoogle Scholar
  3. 3.
    Y. Caro, L. Anamale, M. Fouillaud, P. Laurent, T. Petit, and L. Dufosse (2012). Nat. Prod. Bioprospect. 2, 174–193.CrossRefGoogle Scholar
  4. 4.
    L. Dufosse (2006). Food Technol. Biotechnol. 44, 313–321.Google Scholar
  5. 5.
    C. K. Venil and P. Lakshmanaperumalsamy (2009). Electron. J. Biol. 5, 49–61.Google Scholar
  6. 6.
    S. Mehrabian, A. Majd, and I. Majd (2000). Aerobiologia 16, 455–458.CrossRefGoogle Scholar
  7. 7.
    P. Velmurugan, S. Kamala Kannan, V. Balachandar, P. Lakshmanaperumalsamy, J. C. Chae, and B. T. Oh (2010). Carbohydr. Polym. 79, 262–268.CrossRefGoogle Scholar
  8. 8.
    M. S. Teixeira, M. S. Martins, J. C. Da Silva, L. S. Kirsch, O. C. Fernandes, A. B. Carneiro, and N. Durán (2012). Curr. Trends Biotechnol. Pharm. 6, (3), 300–311.Google Scholar
  9. 9.
    V. C. Santos-ebinuma, I. C. Roberto, M. F. S. Teixeira, and A. Passoajr (2013). Biotechnol. Prog. 29, 778–785.CrossRefGoogle Scholar
  10. 10.
    H. P. Borase, R. B. Salunkhe, C. D. Patil, R. K. Suryawanshi, B. K. Salunke, N. D. Wagh, and S. V. Patil (2015). Biotechnol. Appl. Biochem. 62, 780–784.CrossRefGoogle Scholar
  11. 11.
    P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanopart. Res. 10, 507–517.CrossRefGoogle Scholar
  12. 12.
    A. K. Singh and O. N. Srivastava (2015). Nanoscale Res. Lett. 10, 353.CrossRefGoogle Scholar
  13. 13.
    J. Leveneur, G. I. N. Waterhouse, J. Kennedy, J. B. Metson, and D. R. G. Mitchell (2011). J. Phys. Chem. 115, 20978–20985.Google Scholar
  14. 14.
    H. P. Borase, B. K. Salunke, R. B. Salunkhe, C. D. Patil, J. E. Hallsworth, B. S. Kim, and S. V. Patil (2014). Appl. Biochem. Biotechnol. 173, 1–29.CrossRefGoogle Scholar
  15. 15.
    H. P. Borase, C. D. Patil, R. K. Suryawanshi, and S. V. Patil (2013). Appl. Biochem. Biotechnol. 171, 676–688.CrossRefGoogle Scholar
  16. 16.
    S. S. Ravi, L. R. Christena, N. SaiSubramanian, and S. P. Anthony (2013). Analyst 138, 4370–4377.CrossRefGoogle Scholar
  17. 17.
    F. Heidarpour, W. W. Ghani, A. Fakhru’l-Razi, S. Sobri, V. Heydarpour, M. Zargar, and M. R. Mozafari (2011). Clean Technol. Environ. 13, 499–507.CrossRefGoogle Scholar
  18. 18.
    A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Microbiol. 56, 531–540.Google Scholar
  19. 19.
    S. V. Otari, R. M. Patil, S. J. Ghosh, N. D. Thorat, and S. H. Pawar (2015). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 136, 1175–1180.CrossRefGoogle Scholar
  20. 20.
    R. B. Salunkhe, S. V. Patil, B. K. Salunke, C. D. Patil, and A. M. Sonawane (2011). Appl. Biochem. Biotechnol. 165, 221–234.CrossRefGoogle Scholar
  21. 21.
    V. Ahluwalia, J. Kumar, R. Sisodia, N. A. Shakil, and S. Walia (2014). Ind. Crops Prod. 55, 202–206.CrossRefGoogle Scholar
  22. 22.
    K. C. Bhainsa and S. F. D’Souza (2006). Colloids Surf. B 47, 160–164.CrossRefGoogle Scholar
  23. 23.
    A. Ingle, M. Rai, A. Gade, and M. Bawaskar (2009). J. Nanopart. Res. 11, 2079.CrossRefGoogle Scholar
  24. 24.
    A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B 28, 313–318.CrossRefGoogle Scholar
  25. 25.
    H. Barabadi and S. Honary (2016). Pharm. Biomed. Res. 2, 1–7.Google Scholar
  26. 26.
    P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. Sainkars, M. Khan, R. Parishcha, P. Ajavkumar, et al. (2001). Nano Lett. 1, 515–519.CrossRefGoogle Scholar
  27. 27.
    F. Denizot and R. Lang (1986). J. Immunol. Methods 89, (2), 271–277.CrossRefGoogle Scholar
  28. 28.
    S. Pandey, G. K. Goswami, and K. K. Nanda (2012). Int. J. Biol. Macromol. 51, 583–589.CrossRefGoogle Scholar
  29. 29.
    K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150–153.CrossRefGoogle Scholar
  30. 30.
    R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain (2008). Toxicol. Sci. 101, 239–253.CrossRefGoogle Scholar
  31. 31.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83–96.CrossRefGoogle Scholar
  32. 32.
    R. J. Pecora (2000). Nanopart. Res. 2, 123–131.CrossRefGoogle Scholar
  33. 33.
    S. K. Brar and M. Verma (2011). Trends Anal. Chem. 30, 4–17.CrossRefGoogle Scholar
  34. 34.
    L. Calzolai, D. Gilliland, C. Pascual Garc`ıa, and F. Rossi (2011). J. Chromatogr. 1218, 4234–4239.CrossRefGoogle Scholar
  35. 35.
    R. Augustine, N. Kalarikkaland, and S. Thomas (2014). Appl. Nanosci. 4, 809–818.CrossRefGoogle Scholar
  36. 36.
    K. Singh, M. Panghal, S. Kadyan, U. Chaudhary, and J. P. Yadav (2014). J. Nanobiotechnol. 12, 40.CrossRefGoogle Scholar
  37. 37.
    G. Narasimha, B. Praveen, and K. Mallikarjuna (2011). B Deva Prasad Raju. Int. J. Nano Dimens. 2, 29–36.Google Scholar
  38. 38.
    M. Saravanan (2010). World Acad. Sci. Eng. Technol. 68, 505.Google Scholar
  39. 39.
    S. H. Koli, B. V. Mohite, H. P. Borase, and S. V. Patil (2017). J. Clust. Sci. 28, 2719.CrossRefGoogle Scholar
  40. 40.
    C. Sekar and R. Parimaladevi (2009). J. Optoelectron. Biomed. Mater. 1, 215.Google Scholar
  41. 41.
    M. Abdeaziz and E. M. Abdelrazek (2013). J. Electron. Mater. 42, 2743.CrossRefGoogle Scholar
  42. 42.
    S. Yong, Y. Junyeob, W. Cheol, L. Jinhwan, H. Sukjoon, H. N. Koo, Y. Dong-Yol, and H. K. Seung (2012). Thermochim. Acta 20, 52–56.Google Scholar
  43. 43.
    Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). J. Biomed. Mater. Res. 52, 662–668.CrossRefGoogle Scholar
  44. 44.
    S. Koli, B. Mohite, R. Suryawanshi, H. Borase, and S. Patil (2018). Bioprocess Biosyst. Eng. 41, 715–727.CrossRefGoogle Scholar
  45. 45.
    A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N. S. Alharbi, J. M. Khaled, and D. Kuznetsov (2017). J. Clust. Sci 28, 995–1008.CrossRefGoogle Scholar
  46. 46.
    N. Priyadharsshini, P. Mubarak Ali, and P. Velusamy (2013). Colloids Surf. B Biointerfaces 102, 232–237.CrossRefGoogle Scholar
  47. 47.
    D. A. Sun, H. S. Courtney, and E. H. Beachey (1988). Antimicrob. Agents Chemother. 32, 1370–1374.CrossRefGoogle Scholar
  48. 48.
    M. G. Guzmán, J. Dille, and S. Godet (2009). Int. J. Chem. Biomol. Eng. 2, 171–179.Google Scholar
  49. 49.
    M. Yamanaka, K. Hara, and J. Kudo (2005). Appl. Environ. Microbiol. 71, 7589–7593.CrossRefGoogle Scholar
  50. 50.
    W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, O. Y. You-Sheng, and Y. B. Chen (2010). Appl. Microbiol. Biotechnol. 85, 1115–1122.CrossRefGoogle Scholar
  51. 51.
    M. A. Dar, A. Ingle, and M. Rai (2013). Nanotechnol. Biol. Med. 9, 105–110.CrossRefGoogle Scholar
  52. 52.
    K. I. Batarseh (2004). J. Antimicrob. Chemother. 54, 546–548.CrossRefGoogle Scholar
  53. 53.
    A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan (2010). Nanomedicine 6, 103–109.CrossRefGoogle Scholar
  54. 54.
    T. A. Souza, L. P. Franchi, L. R. Rosa, et al. (2016). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 795, 70–83.CrossRefGoogle Scholar
  55. 55.
    A. Alfuraydi, S. Devanesan, M. Al-Ansari, M. S. AlSalhi, and A. J. Ranjitsingh (2019). J. Photochem. Photobiol. B Biol. 192, 83–89.  https://doi.org/10.1016/j.jphotobiol.2019.01.011.CrossRefGoogle Scholar
  56. 56.
    N. Igaz, D. Kovács, Z. Rázga, et al. (2016). Colloids Surf. B Biointerfaces 146, 670–677.CrossRefGoogle Scholar
  57. 57.
    E. E. Emekaa, O. C. Ojiefoh, C. Aleruchi, L. A. Hassan, O. M. Christiana, M. Rebecca, E. O. Darea, and A. E. Temitope (2014). Micron 57, 1–5.CrossRefGoogle Scholar
  58. 58.
    A. K. Suresh, D. Pelletier, W. Wang, J. L. Morrell-Falvey, B. Gu, and M. J. Doktycz (2012). Langmuir 28, 2727–2735.CrossRefGoogle Scholar
  59. 59.
    A. Melaiye, Z. Sun, K. Hindi, et al. (2005). J. Am. Chem. Soc. 127, (7), 2285–2291.CrossRefGoogle Scholar
  60. 60.
    S. Barua, R. Konwarha, S. S. Bhattacharyab, P. Dasb, K. S. P. Devic, T. K. Maitic, M. Mald, and N. Karaka (2013). Colloids Surf. B 105, 37–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biological and Geological Sciences Department, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations