Synthesis, Structure and Magnetic Properties of a Fe(III) [24-azaMC-8] Azametallacrown Nanocluster with Diacylhydrazine Ligand

  • Sen-Da Su
  • Xiao-Ming Ou-Yang
  • Ke-Ke Guo
  • Qing-Mei Lin
  • Yan Li
  • Kai WangEmail author
  • Shu-Ying LuoEmail author
  • Fu-Pei LiangEmail author
Original Paper


A novel Fe(III) cluster formulated as [\({\text{Fe}}^{\text{III}}_{8}\)(schhz)4(Py)6(H2O)2]∙2H2O (1) was synthesized by the hydrothermal reaction of FeCl2 and a symmetrical diacylhydrazine ligand N,N′-bissalicyl-1,3-cyclohexanedicarbohydrazide (H6schhz) in the presence of pyridine (Py) and pyrazine (Pz). It displays a nano-sized [24-MC-8] azametallacrown (azaMC) structure that eight Fe(III) ions are linked together by N–N bridges from four schhz6− ligands. To the best of our knowledge, it is the second case of Fe(III) [24-MC-8] azaMC up to now. The magnetic investigations reveal that the N–N bridges convey antiferromagnetic couplings between the Fe(III) centers in the system.


Fe(III) azametallacrown Diacylhydrazine Magnetic properties 



This work was financially supported by the National Natural Science Foundation of China (Nos. 21771043 and 51572050), the Guangxi Natural Science Foundation (No. 2018GXNSFAA138123) and the Program of the Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi (No. GXYSXTZX2017-II-3).

Supplementary material

10876_2019_1545_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1069 kb)
10876_2019_1545_MOESM2_ESM.cif (2.3 mb)
Supplementary material 2 (CIF 2336 kb)
10876_2019_1545_MOESM3_ESM.pdf (268 kb)
Supplementary material 3 (PDF 268 kb)


  1. 1.
    G. R. C. Hamilton, S. K. Sahoo, S. Kamila, N. Singh, N. Kaur, B. W. Hyland, and J. F. Callan (2015). Chem. Soc. Rev. 44, 4415.CrossRefGoogle Scholar
  2. 2.
    P. Happ, C. Plenk, E. Rentschler (2015). Coord. Chem. Rev. 289, 238.CrossRefGoogle Scholar
  3. 3.
    M. Ostrowska, I. O. Fritsky, E. Gumienna-Kontecka, A. V. Pavlishchuk (2016). Coord. Chem. Rev. 327, 304.CrossRefGoogle Scholar
  4. 4.
    A. C. Jahnke, K. Proepper, C. Bronner, J. Teichgraeber, S. Dechert, M. John, O. S. Wenger, F. Meyer, and J. Am (2012). Chem. Soc. 134, 2938.CrossRefGoogle Scholar
  5. 5.
    J. J. Bodwin, A. D. Cutland, R. G. Malkani, and V. L. Pecoraro (2001). Coord. Chem. Rev. 489, 216.Google Scholar
  6. 6.
    B. Kwak, H. Rhee, and M. S. Lah (1998). Inorg. Chem. 37, 3599.CrossRefGoogle Scholar
  7. 7.
    S. Wang, L. Q. Kong, H. Yang, Z. T. He, Z. Jiang, D. C. Li, S. Y. Zeng, M. J. Niu, Y. Song, and J. M. Dou (2011). Inorg. Chem. 50, 2705.CrossRefGoogle Scholar
  8. 8.
    C. Atzeri, V. Marzaroli, M. Quaretti, J. R. Travis, L. D. Bari, C. M. Zaleski, and M. Tegoni (2017). Inorg. Chem. 56, 8257.CrossRefGoogle Scholar
  9. 9.
    C. S. Lim, M. Tegoni, T. Jakusch, J. W. Kampf, and V. L. Pecoraro (2012). Inorg. Chem. 51, 11533.CrossRefGoogle Scholar
  10. 10.
    L. F. Jin, H. Yu, S. X. Wu, F. P. Xiao (2009). Dalton Trans. 1, 197.CrossRefGoogle Scholar
  11. 11.
    H. Yang, Q. X. Yao, Y. W. Li, D. C. Li, and J. M. Dou (2014). Dalton Trans. 43, 16986.CrossRefGoogle Scholar
  12. 12.
    S. Lin, S. X. Liu, Z. Chen, B. Z. Lin, and S. Gao (2004). Inorg. Chem. 43, 2222.CrossRefGoogle Scholar
  13. 13.
    R. P. John, K. Lee, B. J. Kim, B. J. Suh, H. Rhee, and M. S. Lah (2005). Inorg. Chem. 44, 7109.CrossRefGoogle Scholar
  14. 14.
    X. Liu, W. Liu, K. Lee, M. Park, H. C. Ri, G. H. Kim, M. S. Lah (2008). Dalton Trans. 46, 6579.CrossRefGoogle Scholar
  15. 15.
    W. Liu, K. Lee, M. Park, R. P. John, D. Moon, Y. Zou, X. Liu, H. C. Ri, G. H. Kim, and M. S. Lah (2008). Inorg. Chem. 47, 8807.CrossRefGoogle Scholar
  16. 16.
    J. L. Pan, Q. Guo, B. Yang, Y. Y. Li, J. G. Cao, X. G. Meng, and F. P. Xiao (2016). CrystEngComm. 18, 6143.CrossRefGoogle Scholar
  17. 17.
    S. X. Liu, S. Lin, B. Z. Lin, C. C. Lin, and J. Q. Huang (2001). Angew. Chem. Int. Ed. 40, 1084.CrossRefGoogle Scholar
  18. 18.
    J. M. Dou, M. L. Liu, D. C. Li, D. Q. Wang (2006). Eur. J. Inorg. Chem. 23, 4866.CrossRefGoogle Scholar
  19. 19.
    K. Wang, Z. L. Chen, H. H. Zou, S. H. Zhang, Y. Li, X. Q. Zhang, W. Y. Sun, and F. P. Liang (2018). Dalton Trans. 47, 2337.CrossRefGoogle Scholar
  20. 20.
    K. Wang, Z. L. Chen, H. H. Zou, K. Hu, H. Y. Li, Z. Zhang, W. Y. Sun, and F. P. Liang (2016). Chem. Commun. 52, 8297.CrossRefGoogle Scholar
  21. 21.
    Z. L. Chen, Y. L. Shen, L. L. Li, H. H. Zou, X. X. Fu, Z. Y. Liu, K. Wang, and F. P. Liang (2017). Dalton Trans. 46, 15032.CrossRefGoogle Scholar
  22. 22.
    K. Wang, S. Tang, Z. B. Hu, H. H. Zou, X. L. Wang, S. H. Zhang, Y. Li, Z. L. Chen, and F. P. Liang (2018). RSC Adv. 8, 6218.CrossRefGoogle Scholar
  23. 23.
    G. M. Sheldrick SHELX-2014: Programs for Crystal Structure Analysis (University of Göttingen, Göttingen, 2014).Google Scholar
  24. 24.
    G. M. Sheldrick (2015). Acta Crystallogr. 71, 3.Google Scholar
  25. 25.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  26. 26.
    L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2015). Acta Crystallogr. 71, 59.Google Scholar
  27. 27.
    A. L. Spek (2015). Acta Crystallogr. 71, 9.Google Scholar
  28. 28.
    J. Goura, P. Bag, V. Mereacre, A. K. Powell, and V. Chandrasekhar (2015). Inorg. Chem. 53, 8147.CrossRefGoogle Scholar
  29. 29.
    Y. Y. Zhu, T. T. Yin, S. D. Jiang, A. L. Barra, W. Wernsdorfer, P. Neugebauer, R. Marx, M. Dörfel, B. W. Wang, Z. Q. Wu, J. Slageren, and S. Gao (2014). Chem. Commun. 50, 5090.Google Scholar
  30. 30.
    M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez (2013). SHAPE, Version 2.1. Department of Chemistry, University of Barcelona.Google Scholar
  31. 31.
    N. Ahmed, A. Upadhyay, T. Rajeshkumar, S. Vaidya, J. Schnack, G. Rajaraman, and M. Shanmugam (2015). Dalton Trans. 44, 18743.CrossRefGoogle Scholar
  32. 32.
    O. L. Sydora, P. T. Wolczanski, and E. B. Lobkovsky (2003). Angew. Chem. Int. Ed. 42, 2685.CrossRefGoogle Scholar
  33. 33.
    K. L. Taft, C. D. Delfs, G. C. Papaefthymiou, S. Foner, D. Gatteschi, and S. J. Lippard (1984). J. Am. Chem Soc. 116, 823.CrossRefGoogle Scholar
  34. 34.
    O. Botezat, J. van Leusen, P. Kögerler, and S. G. Bac (2018). Inorg. Chem. 57, 7904.CrossRefGoogle Scholar
  35. 35.
    S. J. Liu, S. D. Han, J. M. Jia, L. Xue, Y. Cui, S. M. Zhang, and Z. Chang (2014). CrystEngComm. 16, 5212.CrossRefGoogle Scholar
  36. 36.
    N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, and K. S. Murray (2013). J. Comput. Chem. 34, 1164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinChina
  2. 2.State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinChina

Personalised recommendations