Advertisement

Effect of Annealing Temperature on the Structural and Optical Properties of CdS/PVA Nanostructure Thin Films Using Dip Coating Method

  • L. DhatchinamurthyEmail author
  • P. Thirumoorthy
  • L. Arunraja
  • R. Subramanian
Original Paper
  • 32 Downloads

Abstract

The cadmium sulfide/polyvinyl alcohol (CdS/PVA) nanocomposite thin films were prepared on a glass substrate by dip coating method. The prepared samples were annealed at 323, 373 and 423 K, respectively, and one sample was prepared without annealing and all the nanostructured thin films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy, energy-dispersive analysis of X-ray diffraction (EDAX), UV–Vis spectrophotometer (UV–Vis), photoluminescence (PL) spectra and Fourier transform infrared spectrophotometer (FTIR). The XRD result reveals hexagonal structure of nanocomposites with a different grain size. The SEM images indicated that the both films were homogeneous with smooth surface, but among this samples the annealed sample 373 K is given better result. The elemental compositions of the both as-prepared and annealed CdS/PVA nanocomposites were analyzed by EDAX. The effect of quantum confinement and the shifts in optical bandgap were calculated from the PL spectra and UV–Vis spectra. From the shift in optical bandgap, the sizes of the particles were calculated. FTIR analysis clearly showed the formation of polymer matrix grown CdS/PVA thin films. The CdS/PVA thin film annealed at 373 K was found to be more appropriate to window layer in solar cell application.

Keywords

Bandgap Cadmium sulfide PVA Solar cell 

Notes

Acknowledgements

The author is thankful to the Management and Principal of K. S. Rangasamy College of Arts and Science College (Autonomous), Tiruchengode, Tamilnadu, India for providing facilities to conduct this research work.

References

  1. 1.
    J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan, and G. Hodes (2000). Chem. Mater. 12, 1018.CrossRefGoogle Scholar
  2. 2.
    Z. A. Peng and X. J. Peng (2001). J. Am. Chem. Soc. 123, 183.CrossRefGoogle Scholar
  3. 3.
    H. J. Koo, Nanoscience and Technology Series (McGraw Hill, USA, 2006).Google Scholar
  4. 4.
    H. F. Al-Taay, M. A. Mahdi, D. Parlevliet, Z. Hassan, and P. K. Jennings (2014). Superlattices Microstruct. 68, 90.CrossRefGoogle Scholar
  5. 5.
    J. Britt and C. Ferekids (1993). Appl. Phys. Lett. 62, 2851.CrossRefGoogle Scholar
  6. 6.
    B. Ullrich, D. M. Bangall, H. Sakai, and Y. Segawa (2000). J. Lumin. 87, 1162.CrossRefGoogle Scholar
  7. 7.
    B. Su and K. L. Choy (2000). Thin Solid Films 359, 160.CrossRefGoogle Scholar
  8. 8.
    S. Rengaraj, A. Ferancora, S. H. Jee, S. Vengataraj, Y. Kim, J. Labuda, and M. Sillanpaa (2010). Electrochim. Acta 56, 501.CrossRefGoogle Scholar
  9. 9.
    W. I. Danakar, I. E. Lyons, and G. C. Morris (1985). Sol. Energy Mater. Sol. Cells 12, 137.CrossRefGoogle Scholar
  10. 10.
    L. Arunraja, P. Thirumoorthy, A. Karthik, R. Subramanian, and V. Rajendran (2017). J. Mater. Sci. Mater. Electron. 28, 18133.CrossRefGoogle Scholar
  11. 11.
    L. Arunraja, P. Thirumoorthy, A. Karthik, V. Rajendran, and L. Edwinpaul (2016). J. Electron. Mater. 45, 4100.CrossRefGoogle Scholar
  12. 12.
    K. Senthil, D. Mangalaraj, and S. K. Narayandass (2001). Appl. Surf. Sci. 169, 476.CrossRefGoogle Scholar
  13. 13.
    Y. Kanemitsu, T. Nagai, and T. Kushida (2003). Appl. Phys. Lett. 82, 388.CrossRefGoogle Scholar
  14. 14.
    D. Saika, P. K. Seikia, P. K. Gogri, M. R. Das, P. Sengupta, and M. V. Shelke (2011). Mater. Chem. Phys. 131, 223.CrossRefGoogle Scholar
  15. 15.
    H. Chen, W. Li, H. Liu, and L. Zhu (2010). Sol. Energy 84, 1201.CrossRefGoogle Scholar
  16. 16.
    P. M. Bandaranayake, P. V. Jayaweera, and K. Tennakone (2003). Sol. Energy Mater. Sol. Cells 76, 57.CrossRefGoogle Scholar
  17. 17.
    P. K. Kanna, R. R. Gokhale, V. V. V. S. Subbarao, N. Singh, K. W. Jun, and B. K. Das (2005). Mater. Chem. Phys. 94, 454.CrossRefGoogle Scholar
  18. 18.
    J. Lee, E. Cates, and A. Bianconi (1994). J. Am. Chem. Soc. 116, 4738.CrossRefGoogle Scholar
  19. 19.
    Y. Wang, G. Meng, L. Zhang, C. Liang, and J. Zhang (2002). Chem. Mater. 14, 1773.CrossRefGoogle Scholar
  20. 20.
    X. Yuan (2011). Polym. Bull. 67, 1758.CrossRefGoogle Scholar
  21. 21.
    S. B. Aziz, M. Rasheed, S. R. Saeed, and O. G. Abdullah (2017). Int. J. Electrochem. Sci. 12, 3263.CrossRefGoogle Scholar
  22. 22.
    R. Devi, P. Purkayastha, P. K. Kalita, and B. K. Sarma (2007). Bull. Mater. Sci. 30, 123.CrossRefGoogle Scholar
  23. 23.
    S. Gandhi, P. Abiramipriya, N. Pooja, J. J. L. Jeyakumari, A. Y. Arasi, V. Dhanalakshmi, M. R. G. Nair, and R. Anbarasan (2011). J. Non-Cryst. Solids 357, 181.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Dhatchinamurthy
    • 1
    • 3
    Email author
  • P. Thirumoorthy
    • 2
  • L. Arunraja
    • 3
  • R. Subramanian
    • 4
  1. 1.Research and Development Centre, Department of ElectronicsBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Electronics and CommunicationGovernment Arts CollegeDharmapuriIndia
  3. 3.Department of Electronics and CommunicationK.S. Rangasamy College of Arts and Science (Autonomous)TiruchengodeIndia
  4. 4.Department of ChemistrySun Arts and Science CollegeThiruvannamalaiIndia

Personalised recommendations