Advertisement

Coordination Polymers Based on [Re4Te4(CN)12]4− Cluster Anion, Lanthanide Cations and 1,10-Phenantroline

  • Yulia M. Litvinova
  • Yakov M. Gayfulin
  • Denis G. Samsonenko
  • Dmitry A. Piryazev
  • Yuri V. MironovEmail author
Original Paper
  • 33 Downloads

Abstract

The cubane chalcocyanide cluster anion [Re4Te4(CN)12]4− was used as a pre-made building block for construction of a series of seven new coordination polymers (CPs) based on cationic complexes of Ln3+ ions and 1,10-phenantroline (phen). Together with three previously known compounds of this type, 1D CPs based on [Re4Te4(CN)12]4− anion formed a representative series which includes ten compounds (Ln = La, Pr, Nd, Sm–Ho, Yb). The main structural motif in the new compounds is the 1D chains composed of alternating cluster anions and [Ln(H2O)n(phen)m]3+ cationic fragments. Topology of the chains was found to be independent from the ionic radius and coordination number of the lanthanide ion. However, different number and orientation of coordinated phen and H2O molecules in the coordination environment of the lanthanide ions led to formation of several types of the supramolecular structures formed by non-covalent interactions between H2O, phen and CN ligands. Influence of coordination environment of the lanthanide ions and conditions of the synthesis to the supramolecular structures is discussed in this work as well as structural relations with 1D coordination polymers based on mononuclear cyanometallate building blocks.

Keywords

Lanthanide Coordination polymer Cyanometallate Cluster Rhenium Crystal structure 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 14-23-00013).

Supplementary material

10876_2019_1540_MOESM1_ESM.pdf (173 kb)
Supplementary material 1 (PDF 173 kb)
10876_2019_1540_MOESM2_ESM.pdf (204 kb)
Supplementary material 2 (PDF 204 kb)
10876_2019_1540_MOESM3_ESM.pdf (154 kb)
Supplementary material 3 (PDF 153 kb)
10876_2019_1540_MOESM4_ESM.pdf (191 kb)
Supplementary material 4 (PDF 191 kb)
10876_2019_1540_MOESM5_ESM.pdf (209 kb)
Supplementary material 5 (PDF 209 kb)
10876_2019_1540_MOESM6_ESM.pdf (205 kb)
Supplementary material 6 (PDF 205 kb)
10876_2019_1540_MOESM7_ESM.pdf (157 kb)
Supplementary material 7 (PDF 157 kb)

References

  1. 1.
    S. R. Batten, S. M. Neville, D. R. Turner (Royal Society of Chemistry, Cambridge, 2009).Google Scholar
  2. 2.
    H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi (2010). Science. 341. 974.Google Scholar
  3. 3.
    B. Li, H.-M. Wen, Y. Cui, G. Qian, and B. Chen (2015). Prog. Polym. Sci. 48, 40.CrossRefGoogle Scholar
  4. 4.
    O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim (2003). Nature. 423, 705.CrossRefGoogle Scholar
  5. 5.
    K. S. Pedersen, J. Bendix, and R. Clerac (2014). Chem. Commun. 50, 4396.CrossRefGoogle Scholar
  6. 6.
    B.-Q. Ma, S. Gao, G. Su, and G.-X. Xu (2001). Angew. Chem. Int. Ed. 40, 434.CrossRefGoogle Scholar
  7. 7.
    D. Visinescu, M.-G. Alexandru, A. M. Madalan, C. Pichon, C. Duhayon, J.-P. Sutter, and M. Andruh (2015). Dalton Trans. 44, 16713.CrossRefGoogle Scholar
  8. 8.
    D.-Y. Yu, L. Li, H. Zhou, A.-H. Yuan, and Y.-Z. Li (2012). Eur. J. Inorg. Chem. 201, 3394.CrossRefGoogle Scholar
  9. 9.
    W.-T. Chen, A. Q. Wu, G.-C. Guo, M.-S. Wang, L.-Z. Cai, and J.-S. Huang (2010). Eur. J. Inorg. Chem. 2010, 2826.CrossRefGoogle Scholar
  10. 10.
    S. Tanase and J. Reedijk (2006). Coord. Chem. Rev. 250, 2501.CrossRefGoogle Scholar
  11. 11.
    M. P. Shores, L. G. Beauvais, and J. R. Long (1999). J. Am. Chem. Soc. 121, 775.CrossRefGoogle Scholar
  12. 12.
    N. G. Naumov, A. V. Virovets, M. N. Sokolov, S. B. Artemkina, and V. E. Fedorov (1998). Angew. Chem. Int. Ed. 37, 1943.CrossRefGoogle Scholar
  13. 13.
    L. G. Beauvais, M. P. Shores, and J. R. Long (1998). Chem. Mater. 10, 3783.CrossRefGoogle Scholar
  14. 14.
    E. V. Alexandrov, A. V. Virovets, V. A. Blatov, and E. V. Peresypkina (2015). Chem. Rev. 115, 12286.CrossRefGoogle Scholar
  15. 15.
    Y. Kim, V. E. Fedorov, and S.-J. Kim (2009). J. Mater. Chem. 19, 7178.CrossRefGoogle Scholar
  16. 16.
    M. Laing, P. M. Kiernan, W. P. Griffith (1977). J. Chem. Soc., Chem. Commun. 1977, 221.Google Scholar
  17. 17.
    V. P. Fedin, M. R. J. Elsegood, W. Clegg, and A. G. Sykes (1996). Polyhedron. 15, 485.CrossRefGoogle Scholar
  18. 18.
    Y. V. Mironov, T. E. Albrecht-Schmitt, and J. A. Ibers (1997). Z. Kristallogr. - New Cryst. Struct. 1997, 308.Google Scholar
  19. 19.
    O. A. Efremova, Y. V. Mironov, and V. E. Fedorov (2006). Eur. J. Inorg. Chem. 2006, 2533.CrossRefGoogle Scholar
  20. 20.
    O. A. Efremova, Y. V. Mironov, N. V. Kuratieva, and V. E. Fedorov (2011). Polyhedron. 30, 1404.CrossRefGoogle Scholar
  21. 21.
    R. Sessoli and A. K. Powell (2009). Coord. Chem. Rev. 253, 2328.CrossRefGoogle Scholar
  22. 22.
    L.-J. Xu, G.-T. Xu, and Z.-N. Chen (2014). Coord. Chem. Rev. 273–274, 47.CrossRefGoogle Scholar
  23. 23.
    A. Bencini and V. Lippolis (2010). Coord. Chem. Rev. 254, 2096.CrossRefGoogle Scholar
  24. 24.
    Y. M. Litvinova, Y. M. Gayfulin, D. G. Samsonenko, A. S. Bogomyakov, W. Hyuk Shon, S.-J. Kim, J.-S. Rhyee, Y. V. Mironov (2016). Polyhedron. 115, 174.Google Scholar
  25. 25.
    Y. V. Mironov, A. V. Virovets, S. B. Artemkina, and V. E. Fedorov (1999). J. Struct. Chem. 40, (2), 313.CrossRefGoogle Scholar
  26. 26.
    O. A. Efremova, Y. M. Gayfulin, Y. V. Mironov, N. V. Kuratieva, A. I. Smolentsev, and V. E. Fedorov (2012). Polyhedron. 31, 515.CrossRefGoogle Scholar
  27. 27.
    Y. M. Gayfulin, N. V. Kuratieva, Y. M. Litvinova, and Y. V. Mironov (2016). Russ. J. Coord. Chem. 42, 423.CrossRefGoogle Scholar
  28. 28.
    CrysAlisPro (Version 1.171.34.49), Agilent Technologies (2011).Google Scholar
  29. 29.
    G. M. Sheldrick (2008). A short history of SHELX. Acta Crystallographica A 64, 112–122.CrossRefGoogle Scholar
  30. 30.
    Bruker AXS Inc. APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11), SHELXTL (Version 6.12). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA (2004).Google Scholar
  31. 31.
    A. L. Spek (2009). Structure validation in chemical crystallography. Acta Crystallogr. D Biol Crystallogr 65, 148–155.CrossRefGoogle Scholar
  32. 32.
    R. Koner, M. G. B. Drew, A. Figuerola, C. Diaz, and S. Mohanta (2005). Inorganica Chim. Acta. 358, 3041.CrossRefGoogle Scholar
  33. 33.
    M. Estrader, J. Ribas, V. Tangoulis, X. Solans, M. Font-Bardía, M. Maestro, and C. Diaz (2006). Inorg. Chem. 45, 8239.CrossRefGoogle Scholar
  34. 34.
    H. Shen (2014). Acta Crystallogr. C. 70, 1169.CrossRefGoogle Scholar
  35. 35.
    S.-L. Ma, S. Ren, Y. Ma, D.-Z. Liao, and S.-P. Yan (2010). J. Inorg. Organomet. Polym. Mater. 20, 229.CrossRefGoogle Scholar
  36. 36.
    S.-Y. Qian, H. Zhou, A.-H. Yuan, and Y. Song (2011). Cryst. Growth Des. 11, 5676.CrossRefGoogle Scholar
  37. 37.
    H. Zhao, N. Lopez, A. Prosvirin, H. T. Chifotides, and K. R. Dunbar (2007). Dalton Trans. 2007, 878.CrossRefGoogle Scholar
  38. 38.
    J. Long, E. Chelebaeva, J. Larionova, Y. Guari, R. A. S. Ferreira, L. D. Carlos, F. A. Almeida Paz, A. Trifonov, and C. Guérin (2011). Inorg. Chem. 50, 9924.CrossRefGoogle Scholar
  39. 39.
    M. Stojanovic, N. J. Robinson, X. Chen, and R. E. Sykora (2011). Inorg. Chim. Acta. 370, 513.CrossRefGoogle Scholar
  40. 40.
    A. Figuerola, C. Diaz, J. Ribas, V. Tangoulis, C. Sangregorio, D. Gatteschi, M. Maestro, and J. Mahía (2003). Inorg. Chem. 42, 5274.CrossRefGoogle Scholar
  41. 41.
    A. Figuerola, C. Diaz, M. S. El Fallah, J. Ribas, M. Maestro, and J. Mahia (2001). Chem. Commun. 2001, 1204.CrossRefGoogle Scholar
  42. 42.
    J. Wang (2013). Bull. Korean Chem. Soc. 34, 3481.CrossRefGoogle Scholar
  43. 43.
    X.-J. Xu, R.-R. Zhou, J. Wang, L. Li, and J.-Q. Tao (2015). Z. Anorg. Allg. Chem. 641, 490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yulia M. Litvinova
    • 1
  • Yakov M. Gayfulin
    • 1
  • Denis G. Samsonenko
    • 1
    • 2
  • Dmitry A. Piryazev
    • 1
    • 2
  • Yuri V. Mironov
    • 1
    • 2
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations