Advertisement

Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method

  • Pandi BoomiEmail author
  • Gurumallesh Prabu Poorani
  • Subramaniyan Palanisamy
  • Samayanan Selvam
  • Ganesan Ramanathan
  • Sundaram Ravikumar
  • Hamed Barabadi
  • Halliah Gurumallesh Prabu
  • Jeyaraman Jeyakanthan
  • Muthupandian SaravananEmail author
Original Paper
  • 30 Downloads

Abstract

This study gold (Au) and gold–platinum (Au–Pt) colloids were synthesized by borohydride reduction method in the presence of poly(N-vinyl-2-pyrrolidone) as a stabilizing agent. Besides, pristine polyaniline (PANI), PANI-Au nanocomposites, and PANI-Au–Pt nanocomposites were prepared. The synthesized nano-composites characterized by UV–Vis, FT-IR, XRD, and HR-TEM with energy dispersive X-ray techniques. Au and Au–Pt NPs were spherical in shape with particle sizes at 8 and 3 nm, respectively. PANI-Au and PANI-Au–Pt nanocomposites were also spherical in shape with particle sizes at 3 and 2 nm, respectively. Pristine PANI, PANI-Au, and PANI-Au–Pt nanocomposites were subjected to antibacterial activity against gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Vibrio cholerae) bacterial pathogens. PANI-Au–Pt nanocomposite showed significant antibacterial activity (33 ± 1.10 mm dia) against B. subtilis. Besides, the MIC of pristine PANI, PANI-Au, and PANI-Au–Pt nanocomposites were found to be 75, 50 and 25 µg/mL, respectively. Besides, the in vitro anticancer investigations against HepG2 liver cancer cells revealed the highest cytotoxicity for PANI-Au–Pt nanocomposite (21.25 µg/mL) followed by PANI-Au nanocomposite (32 µg/mL) and pristine PANI (49 µg/mL). Overall, the present study showed considerable antibacterial and anticancer activity and suggested their potential use in pharmaceuticals after completing successful clinical trials for safety and affordability.

Keywords

Polyaniline-bimetal Nanocomposite Antibacterial activity Clinical pathogens Anticancer activity 

Notes

Acknowledgments

The authors thank University Grants Commission, New Delhi for providing Assistant professor (No. F. 14-13/2013 (Inno/ASIST) dated 30.03.2013) under the Innovative scheme to carry out the teaching and research work. The authors thankfully acknowledge the DST-FIST [SR/FST/LSI-667/2016(C)], DST-PURSE [SR/PURSE Phase 2/38 (G)] and MHRD-RUSA 2.0 [F. 24/51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India] for the financial supports and infrastructure facilities. The authors (H. Gurumallesh Prabu) acknowledge the UGC-BSR, New Delhi, India for the financial assistance by the onetime grant scheme.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, and S. Natarajan (2019). J. Photochem. Photobiol. 190, 86.CrossRefGoogle Scholar
  2. 2.
    S. Honary, H. Barabadi, P. Ebrahimi, F. Naghibi, and A. Alizadeh (2015). J. Nano Res. 30, 106.CrossRefGoogle Scholar
  3. 3.
    M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol. 6, 17.CrossRefGoogle Scholar
  4. 4.
    H. Barabadi (2017). Cell. Mol. Biol. 63, 3.CrossRefGoogle Scholar
  5. 5.
    H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci. 30, 259.  https://doi.org/10.1007/s10876-018-01491-7.CrossRefGoogle Scholar
  6. 6.
    H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan (2018). IET Nanobiotechnol. 12, 377.CrossRefGoogle Scholar
  7. 7.
    J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad (2017). Nat. Rev. Cancer. 17, 20.CrossRefGoogle Scholar
  8. 8.
    M. Ferrari (2005). Nat. Rev. Cancer. 5, 161.CrossRefGoogle Scholar
  9. 9.
    I. Yacoby and I. Benhar (2008). Nanomedicine (Lond). 3, 329.CrossRefGoogle Scholar
  10. 10.
    M. Kaushik and A. Moores (2016). Green Chem. 18, 622.CrossRefGoogle Scholar
  11. 11.
    M. Saravanan, B. Ramachandran, and H. Barabadi (2018). Microb. Pathog. 114, 180.CrossRefGoogle Scholar
  12. 12.
    T. R. Pasquale and J. S. Tan (2005). Clin. Infect. Dis. 40, 127.CrossRefGoogle Scholar
  13. 13.
    A. Salabat, F. Mirhoseini, M. Mahdieh, and H. Saydi (2015). New J. Chem. 39, 4109.CrossRefGoogle Scholar
  14. 14.
    M. Saravanan and J. D. Domb Abraham (2013). Eur. J. Nanomed. 5, 81.CrossRefGoogle Scholar
  15. 15.
    E. G. R. Fernandes, V. Zucolotto, and A. A. A. De Queiroz (2010). J. Macromol. Sci. A. 47, 1203.CrossRefGoogle Scholar
  16. 16.
    K. D. McKeon, A. Lewis, and J. W. Freeman (2010). J. Appl. Polym. Sci. 115, 1566.CrossRefGoogle Scholar
  17. 17.
    L. P. Wang, W. Wang, L. Di, Y. N. Lu, and J. Y. Wang (2010). Colloids Surf. B Biointerfaces. 80, 72.CrossRefGoogle Scholar
  18. 18.
    P. Humpolicek, V. Kasparkova, P. Saha, and J. Stejskal (2012). Synth. Met. 162, 722.CrossRefGoogle Scholar
  19. 19.
    C. Dhivya, S. A. A. Vandarkuzhali, and N. Radha (2015). Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2015.12.005.
  20. 20.
    P. S. C. Narendra, A. Rameshwar, A. Rohit, and C. A. Suresh (2010). J. Ind. Council Chem. 27, 128.Google Scholar
  21. 21.
    A. Shalini, R. Nishanthi, P. Palani, and V. Jaisankar (2016). Mater. Today Proc. 3, 1633.CrossRefGoogle Scholar
  22. 22.
    R. Prasad, K. Chaitanya, M. Tejoram, D. Basavaraju, K. Rao, R. R. Kumar, S. Sreenivasan, and A. Phani (2012). J. Pharm. Res. 5, 370.Google Scholar
  23. 23.
    J. M. Kinyanjui, N. R. Wijeratne, J. Hanks, and D. W. Hatchett (2006). Electrochim. Acta. 51, 2825.CrossRefGoogle Scholar
  24. 24.
    M. S. Tamboli, M. V. Kulkarni, R. H. Patil, W. N. Gade, S. C. Navale, and B. B. Kale (2012). Colloids Surf. B Biointerfaces. 92, 35.CrossRefGoogle Scholar
  25. 25.
    P. K. Prabhakar, S. Raj, P. R. Anuradha, S. N. Sawant, and M. Doble (2011). Colloids Surf. B Biointerfaces. 86, 146.CrossRefGoogle Scholar
  26. 26.
    X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, and F. Xu (2012). Dalton Trans. 41, 2804.CrossRefGoogle Scholar
  27. 27.
    T. Juknius, M. Ruzauskas, T. Tamulevicius, R. Siugzdiniene, I. Jukniene, A. Vasiliauskas, A. Jurkeviciute, and S. Tamulevicius (2016). Materials (Basel). 9, 371.CrossRefGoogle Scholar
  28. 28.
    Z. Kucekova, P. Humpolicek, V. Kasparkova, T. Perecko, M. Lehocký, I. Hauerlandová, P. Sáha, and J. Stejskal (2014). Colloids Surf. B Biointerfaces. 116, 411.CrossRefGoogle Scholar
  29. 29.
    F. M. Zahed, B. Hatamluyi, F. Lorestani, and Z. Eshaghi (2018). J. Pharm. Biomed. Anal. 161, 12.CrossRefGoogle Scholar
  30. 30.
    M. Banerjee, S. Sharma, A. Chattopadhyay, and S. S. Ghosh (2011). Nanoscale. 3, 5120.CrossRefGoogle Scholar
  31. 31.
    M. Lin, D. Wang, S. Li, Q. Tang, S. Liu, R. Ge, Y. Liu, D. Zhang, H. Sun, and H. Zhang (2016). Biomaterials. 104, 213.CrossRefGoogle Scholar
  32. 32.
    L. E. Ibarra, L. Tarres, S. Bongiovanni, C. A. Barbero, M. J. Kogan, V. A. Rivarola, M. L. Bertuzzi, and E. I. Yslas (2015). Ecotoxicol. Environ. Saf. 114, 84.CrossRefGoogle Scholar
  33. 33.
    Z. B. Anna, B. Patrycja, J. Petr, E. Petrovský, B. Pavel, and H. Daniel (2016). Colloids Surf. B Biointerfaces. 141, 382.CrossRefGoogle Scholar
  34. 34.
    Y.-S. Li, B.-F. Chen, X.-J. Li, W. K. Zhang, and H.-B. Tang (2014). PLOS ONE. 9, e107361.CrossRefGoogle Scholar
  35. 35.
    P. Boomi, H. G. Prabu, and J. Mathiyarasu (2013). Colloids Surf. B Biointerfaces. 103, 9.CrossRefGoogle Scholar
  36. 36.
    P. Boomi, J. Anandha Raj, S. P. Palaniappan, G. Poorani, S. Selvam, H. Gurumallesh Prabu, P. Manisankar, J. Jeyakanthan, and V. K. Langeswaran (2018). J. Photochem. Photobiol. B. 178, 323.CrossRefGoogle Scholar
  37. 37.
    M. Saravanan, V. Gopinath, M. K. Chaurasia, A. Syed, F. Ameen, and N. Purushothaman (2018). Microb. Pathog. 115, 57.CrossRefGoogle Scholar
  38. 38.
    M. Kasithevar, P. Periakaruppan, S. Muthupandian, and M. Mohan (2017). Microb. Pathog. 107, 327.CrossRefGoogle Scholar
  39. 39.
    D. Y. Joh, L. Sun, M. Stangl, A. AlZaki, S. Murty, P. P. Santoiemma, J. J. Davis, B. C. Baumann, M. Alonso-Basanta, D. Bhang, G. D. Kao, A. Tsourkas, and J. F. Dorsey (2013). PLoS ONE. 8, e62425.CrossRefGoogle Scholar
  40. 40.
    S. Yallappa, J. Manjanna, and B. L. Dhananjaya (2015). Spectrochim. Acta A. Mol. Biomol. Spectrosc. 137, 236.CrossRefGoogle Scholar
  41. 41.
    R. Kumar, A. K. Pandey, A. K. Tyagi, G. K. Dey, S. V. Ramagiri, J. R. Bellare, A. Goswami, and J. Colloid (2009). Interface Sci. 337, 523.CrossRefGoogle Scholar
  42. 42.
    L. Tamašauskaitė, R. Tarozaitė, and A. Vaškelis (2006). Chemija. 17, 13.Google Scholar
  43. 43.
    K. Mallick, M. J. Witcomb, and M. S. Scurrell (2006). J. Mater. Sci. 41, 6189.CrossRefGoogle Scholar
  44. 44.
    V. Sridevi, S. Malathi, and C. Devi (2011). Chem. Sci. J. 2011, CSJ-26.Google Scholar
  45. 45.
    Z. Zhang and M. Wan (2002). Synth Met. 128, 83.CrossRefGoogle Scholar
  46. 46.
    S. Vimalraj, S. Rajalakshmi, D. Preeth, S. Vinoth Kumar, T. Deepak, V. Gopinath, K. Murugan, and S. Chatterjee (2018). Mater. Sci. Eng. C. 83, 187.CrossRefGoogle Scholar
  47. 47.
    S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, J. G. Story, and M. F. Bertino (2005). Chem. Mater. 17, 227.CrossRefGoogle Scholar
  48. 48.
    Z. Zhang, Z. Wei, and M. Wan (2002). Macromolecules. 35, 5937.CrossRefGoogle Scholar
  49. 49.
    L. Zhang, H. Peng, P. A. Kilmartin, C. Soeller, R. Tilley, and J. Travas-Sejdic (2008). Macromol.Rapid Commun. 29, 598.CrossRefGoogle Scholar
  50. 50.
    X. Feng, C. Mao, G. Yang, W. Hou, and J.-J. Zhu (2006). Langmuir. 22, 4384.CrossRefGoogle Scholar
  51. 51.
    L. Liu, T. Wei, X. Guan, X. Zi, H. He, and H. Dai (2009). J. Phys. Chem. C. 113, 8595.CrossRefGoogle Scholar
  52. 52.
    K. Yano, V. Nandwana, G. S. Chaubey, N. Poudyal, S. Kang, H. Arami, J. Griffis, and J. P. Liu (2009). J. Phys. Chem. C. 113, 13088.CrossRefGoogle Scholar
  53. 53.
    A. Soni, C. M. Pandey, S. Solanki, and G. Sumana (2015). RSC Adv. 5, 45767.CrossRefGoogle Scholar
  54. 54.
    G. Burygin, B. Khlebtsov, A. Shantrokha, L. Dykman, V. Bogatyrev, and N. Khlebtsov (2009). Nanoscale Res. Lett. 4, 794.CrossRefGoogle Scholar
  55. 55.
    P. Boomi, R. M. Ganesan, G. Poorani, H. Gurumallesh Prabu, S. Ravikumar, and J. Jeyakanthan (2019). Mater. Sci. Eng. C. 99, 202.CrossRefGoogle Scholar
  56. 56.
    M. R. Gizdavic-Nikolaidis, J. Bennett, Z. Zujovic, S. Swift, and G. A. Bowmaker (2012). Synth. Met. 162, 1114.CrossRefGoogle Scholar
  57. 57.
    K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, and Y.-S. Lin (2016). Int. J. Mol. Sci. 17, 1578.CrossRefGoogle Scholar
  58. 58.
    C. Wu (2012). Express Polym. Lett. 6, 465.CrossRefGoogle Scholar
  59. 59.
    M. Saravanan, S. K. Barik, D. MubarakAli, P. Prakash, and A. Pugazhendhi (2018). Microb. Pathog. 116, 221.CrossRefGoogle Scholar
  60. 60.
    S. Honary, K. Ghajar, P. Khazaeli, and P. Shalchian (2011). Trop. J. Pharm. Res. 10, 69.CrossRefGoogle Scholar
  61. 61.
    K. Amarnath, J. Kumar, T. Reddy, V. Mahesh, S. R. Ayyappan, and J. Nellore (2012). Colloids Surf. B Biointerfaces. 92, 254.CrossRefGoogle Scholar
  62. 62.
    M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog. 117, 68.CrossRefGoogle Scholar
  63. 63.
    R. Anjali, S. Palanisamy, M. Vinosha, M. Thenmozhi, P. Rajasekar, T. Marudhupandi, P. Kumar, P. Boomi, and N. M. Prabhu (2018). J. Photochem. Photobiol. 185, 117.CrossRefGoogle Scholar
  64. 64.
    M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine (Lond). 11, 3157.CrossRefGoogle Scholar
  65. 65.
    R. Subbaiya, M. Saravanan, A. R. Priya, K. R. Shankar, M. Selvam, M. Ovais, R. Balajee, and H. Barabadi (2017). IET Nanobiotechnol. 11, 965.CrossRefGoogle Scholar
  66. 66.
    H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev. 10, 285.CrossRefGoogle Scholar
  67. 67.
    J. Baharara, T. Ramezani, N. Hosseini, and M. Mousavi (2018). Iran. J. Pharm. Res. 17, 627.Google Scholar
  68. 68.
    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res. 16, 1167.Google Scholar
  69. 69.
    R. Balint, N. J. Cassidy, and S. H. Cartmell (2014). Acta Biomater. 10, 2341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pandi Boomi
    • 1
    Email author
  • Gurumallesh Prabu Poorani
    • 2
  • Subramaniyan Palanisamy
    • 3
  • Samayanan Selvam
    • 4
  • Ganesan Ramanathan
    • 5
  • Sundaram Ravikumar
    • 6
  • Hamed Barabadi
    • 7
  • Halliah Gurumallesh Prabu
    • 8
  • Jeyaraman Jeyakanthan
    • 1
  • Muthupandian Saravanan
    • 9
    Email author
  1. 1.Department of BioinformaticsAlagappa UniversityKaraikudiIndia
  2. 2.Kumaraguru College of TechnologyCoimbatoreIndia
  3. 3.Disease Control and Prevention Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  4. 4.Department of Chemistry and BiochemicalDongguk University College of EngineeringJung-gu, SeoulSouth Korea
  5. 5.PG. Department of MicrobiologySri Paramakalyani CollegeAlwarkurichiIndia
  6. 6.Department of Biomedical SciencesAlagappa UniversityKaraikudiIndia
  7. 7.Department of Pharmaceutical Biotechnology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  8. 8.Department of Industrial Chemistry, School of Chemical SciencesAlagappa UniversityKaraikudiIndia
  9. 9.Department of Medical Microbiology and Immunology, Institute of Biomedical Science, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations