Advertisement

Optical Properties of Titania–Zirconia Clusters: a TD-DFT Study

  • Abdul MajidEmail author
  • Alia Jabeen
  • Salah Ud-Din Khan
  • Sajjad Haider
Original Paper
  • 12 Downloads

Abstract

Time dependent density functional theory (TD-DFT) study of the optical properties of titania (TiO2), Zirconia (ZrO2) and their hybrid clusters TiZrO4 are reported. The UV–Visible spectra and Circular Dichroism spectra of the clusters were computed to investigate the molecular orbitals, excitation energies, electronic transitions, HOMO–LUMO characters, oscillatory and rotatory strengths of the clusters. The excitation energies of \(TiZrO_{4}\) starting from \(Zr_{2} O_{4}\) appeared in the visible and near UV region whereas the same is found in near UV region when starting geometry was switched to \(Ti_{2} O_{4}\). The findings of this study revealed that the optical properties of the hybrid clusters are strongly influenced from the geometry of starting clusters. Further, the excitation spectra of the hybrid clusters possess the finger prints of the properties of the starting clusters. The optical activity of the hybrid clusters in visible and near UV regions points to potential of the materials for application in photocatalysis. The hybrid material points to possibility of preparation of tunable materials for use in electronic, optoelectronic, electrochemical/photo-catalytic applications and as chiral compounds.

Keywords

Clusters Titania Zirconia TDDFT Excitations CD spectrum 

Notes

Acknowledgements

The authors would like to sincerely appreciate the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No RGP-255.

References

  1. 1.
    S. Roszak and J. Leszczynski (2004). Theor. Comput. Chem. 15, 67.CrossRefGoogle Scholar
  2. 2.
    A. P. Alivisatos (1996). Science 271, 933.CrossRefGoogle Scholar
  3. 3.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.CrossRefGoogle Scholar
  4. 4.
    D. Buceta, et al. (2014). Catalysts. 4, 356.CrossRefGoogle Scholar
  5. 5.
    M. L. Cohen and W. D. Knight (1990). Phys. Today. 43, 420.Google Scholar
  6. 6.
    A. Majid and M. Bibi (2017). J. Nano. Res. 19, 246.CrossRefGoogle Scholar
  7. 7.
    A. Majid and M. Bibi (2017). J. Nano. Res. 19, 122.CrossRefGoogle Scholar
  8. 8.
    M. Castro, et al. (2003). J. Chem. Phy. 118, 2116.CrossRefGoogle Scholar
  9. 9.
    C. E. Ekuma and D. Bagayoko (2011). Jpn. J. Appl. Phy. 50, 101103.CrossRefGoogle Scholar
  10. 10.
    J. Yu, Q. Xiang, and M. Zhou (2009). Appl. Catal. B Env. 90, 595.CrossRefGoogle Scholar
  11. 11.
    O. Chauvet, et al. (1995). Solid. State. Commun. 93, 667.CrossRefGoogle Scholar
  12. 12.
    T. Frauenheim, F. Spiegelman and M. Elstner, Development of next generation accurate approximate DFT/B methods-Flagship workshop and tutorial.Google Scholar
  13. 13.
    G. T. Te Velde, et al. (2001). J. Comput. Chem. 22, 931.CrossRefGoogle Scholar
  14. 14.
    V. Pershina and B. Fricke (1993). J. Chem. Phys. 99, 9720.CrossRefGoogle Scholar
  15. 15.
    J. Snijders, E. Baerends, and P. Ros (1979). Mol. Phy. 38, 1909.CrossRefGoogle Scholar
  16. 16.
    J. S. Thayer Relativistic methods for chemists (Springer, Berlin, 2010), pp. 63–97.CrossRefGoogle Scholar
  17. 17.
    M. Turki, et al. (2001). J. Am. Chem. Soc. 123, 11431.CrossRefGoogle Scholar
  18. 18.
    N. B. Singh and U. Sarkar (2014). Mol. Sim. 40, 1255.CrossRefGoogle Scholar
  19. 19.
    C. Adamo and D. Jacquemin (2013). Chem. Soc. Rev. 42, 845.CrossRefGoogle Scholar
  20. 20.
    Z. W. Qu and H. Zhu (2010). J. Comput. Chem. 31, 2038.Google Scholar
  21. 21.
    N. Prabavathi, N. Senthil Nayaki, and V. Krishnakumar (2015). Pharm. Anal. Acta. 6, 2.Google Scholar
  22. 22.
    R. Jin, et al. (2011). Chin. J. Chem. 29, 13.CrossRefGoogle Scholar
  23. 23.
    D. C. Ghosh and S. Bhattacharyya (2004). Int. J. Mol. Sci. 5, 239.CrossRefGoogle Scholar
  24. 24.
    A. Majid, A. Jabeen, S. U. D. Khan, and S. Haider (2019). J. Nano. Res. 21, 20.CrossRefGoogle Scholar
  25. 25.
    P. K. Jain (2005). Struct. Chem. 16, 421.CrossRefGoogle Scholar
  26. 26.
    M.-X. Chen and X.-H. Yan. (2007). arXiv preprint physics/0702026.Google Scholar
  27. 27.
    I. Bandyopadhyay and C. M. Aikens (2011). J. Phy. Chem. A. 115, 868.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Abdul Majid
    • 1
    Email author
  • Alia Jabeen
    • 1
  • Salah Ud-Din Khan
    • 2
  • Sajjad Haider
    • 3
  1. 1.Department of PhysicsUniversity of GujratGujratPakistan
  2. 2.Sustainable Energy Technologies Center, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Chemical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations