Advertisement

Potential Nematicidal Properties of Silver Boron Nanoparticles: Synthesis, Characterization, In Vitro and In Vivo Root-Knot Nematode (Meloidogyne incognita) Treatments

  • Ahmed I. El-Batal
  • Mohamed S. Attia
  • Mohamed M. Nofel
  • Gharieb S. El-SayyadEmail author
Original Paper
  • 42 Downloads

Abstract

The purpose of this work is to evaluate the anti-nematode activity of silver boron nanoparticles (AgB NPs) synthesized by PVP polymer and gamma rays as a novel cost-effective and eco-friendly green method. AgB NPs were structurally identified by UV–Vis., XRD, HRTM, DLS, FTIR, SEM and EDX mapping analysis. A suggested reaction mechanism was considered. In-vitro and in vivo nematicidal potential of AgB NPs against root-knot Meloidogyne incognita was examined. HRTEM image exhibited spherical AgB NPs with a diameter of 29.55 nm. FTIR spectrum explains that there is a continuous reduction of ions due to PVP oxidation. AgB NPs possesses an encourage anti-nematode against M. incognita causing root-knot in the tomato plant. Treatment 3 exhibited the maximum mortality as 74.20% after 96 h. It also decreased root galls and egg masses numbers after 1 week of the infection (20.33 galls and 2.33 egg masses). Treatments 3 and 4 reduced the numbers of the 2nd stage juveniles, females and the developmental stages. Boron at the permissible limits was adjusted to be more than silver in the synthesized AgB NPs (to avoid the toxicity) for developing the resistance and immunity of the tomato plant. Therefore, AgB NPs may recognize potential targets within agricultural treatments.

Keywords

Root-knot nematode PVP Anti-nematode Silver boron nanoparticles Gamma irradiation 

Notes

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Professor at Military Technical College), Dr. Mohamed M. Ghobashy (Associate Professor at NCRRT), Dr. Muhammad I. Abdel Maksoud (Lecturer at NCRRT), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participation and/or Animals

This article does not contain any studies with human and/or animals performed by any of the authors.

Informed Consent

Not applicable.

Ethical Approval

Not applicable.

References

  1. 1.
    D. Kalaiselvi, A. Mohankumar, G. Shanmugam, S. Nivitha, and P. Sundararaj (2019). Crop Prot. 117, 108–114.Google Scholar
  2. 2.
    D. M. Bird and I. Kaloshian (2003). Physiol. Mol. Plant Pathol. 62, (2), 115–123.Google Scholar
  3. 3.
    M. A. Abbassy, M. A. Abdel-Rasoul, A. M. Nassar, and B. S. Soliman (2017). Arch. Phytopathol. Plant Prot. 50, (17–18), 909–926.Google Scholar
  4. 4.
    M. Hussain, T. Mukhtar, and M. Kayani (2011). J. Anim. Plant Sci. 21, (857), 861.Google Scholar
  5. 5.
    H. Regaieg, M. Bouajila, L. Hajji, A. Larayadh, N. Chiheni, I. Guessmi-Mzoughi, and N. Horrigue-Raouani (2017). Arch. Phytopathol. Plant Prot. 50, (17–18), 839–849.Google Scholar
  6. 6.
    S. B. Milligan, J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V. M. Williamson (1998). Plant Cell 10, (8), 1307–1319.Google Scholar
  7. 7.
    A. H. N. El-Deen and B. A. El-Deeb (2018). J. Agric. Sci. 10, (2), 148.Google Scholar
  8. 8.
    A. M. Nassar (2016). Asian J. Nematol. 5, (1), 14–19.Google Scholar
  9. 9.
    M. A. Maksoud, G. S. El-Sayyad, A. Ashour, A. I. El-Batal, M. S. Abd-Elmonem, H. A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Mater. Sci. Eng., C 92, 644–656.Google Scholar
  10. 10.
    A. Baraka, S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. Tawfic (2017). Chem. Pap. 71, (11), 2271–2281.Google Scholar
  11. 11.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Cluster Sci. 29, (6), 1003–1015.Google Scholar
  12. 12.
    G. Carotenuto, Y.-S. Her, and E. Matijević (1996). Ind. Eng. Chem. Res. 35, (9), 2929–2932.Google Scholar
  13. 13.
    C. Sanchez, F. Ribot, and B. Lebeau (1999). J. Mater. Chem. 9, (1), 35–44.Google Scholar
  14. 14.
    T. Morsi, A. M. Elbarbary, M. M. Ghobashy, and S. H. Othman (2018). Radiochim. Acta 106, (5), 383–392.Google Scholar
  15. 15.
    M. G. Naseri, E. B. Saion, H. A. Ahangar, and A. H. Shaari (2013). Mater. Res. Bull. 48, (4), 1439–1446.Google Scholar
  16. 16.
    E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp (2004). J. Phys. Chem. B 108, (4), 1224–1229.Google Scholar
  17. 17.
    C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M.-P. Pileni (2004). J. Phys. Chem. B 108, (35), 13242–13248.Google Scholar
  18. 18.
    S. Sagadevan, K. Pal, Z. Z. Chowdhury, and M. E. Hoque (2017). J. Sol–Gel Sci. Technol. 83, (2), 394–404.Google Scholar
  19. 19.
    A. El-Batal, B. M. Haroun, A. A. Farrag, A. Baraka, and G. S. El-Sayyad (2014). Br. J. Pharm. Res. 4, (11), 1341.Google Scholar
  20. 20.
    A. I. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, and G. S. El-Sayyad (2018). Microb. Pathog. 118, 159–169.Google Scholar
  21. 21.
    A. I. El-Batal, N. M. Sidkey, A. Ismail, R. A. Arafa, and R. M. Fathy (2016). J. Chem. Pharm. Res 8, (4), 934–951.Google Scholar
  22. 22.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol. 29, (11), 2616–2625.Google Scholar
  23. 23.
    F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Microb. Pathog. 122, 108–116.Google Scholar
  24. 24.
    J. Li, B. Kang, S. Chang, and Y. Dai (2012). Micro Nano Lett. 7, (4), 360–362.Google Scholar
  25. 25.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamery, and M. Gobara (2017). J. Cluster Sci. 28, (3), 1083–1112.Google Scholar
  26. 26.
    A. I. El-Batal, F. M. Mosalam, M. Ghorab, A. Hanora, and A. M. Elbarbary (2018). Int. J. Biol. Macromol. 107, 2298–2311.Google Scholar
  27. 27.
    A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Basic Microbiol. 56, (5), 531–540.Google Scholar
  28. 28.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamry, K. M. Agaypi, M. A. Elsayed, and M. Gobara (2017). J. Photochem. Photobiol., B 173, 120–139.Google Scholar
  29. 29.
    T. Thirugnanasambandan, K. Pal, A. Sidhu, M. A. Elkodous, H. Prasath, K. Kulasekarapandian, A. Ayeshamariam, and J. Jeevanandam (2018). Nano-Struct. Nano-Objects 16, 224–233.Google Scholar
  30. 30.
    A.-W. A. Ismail, N. M. Sidkey, R. A. Arafa, R. M. Fathy, and A. I. El-Batal (2016). Br. Biotechnol. J. 12, (3), 1.Google Scholar
  31. 31.
    K. F. Abdellatif, R. H. Abdelfattah, and M. S. M. El-Ansary (2016). Iran. J. Biotechnol. 14, (4), 250.Google Scholar
  32. 32.
    W. Cromwell, J. Yang, J. Starr, and Y.-K. Jo (2014). J. Nematol. 46, (3), 261.Google Scholar
  33. 33.
    S. Davarpanah, A. Tehranifar, G. Davarynejad, J. Abadía, and R. Khorasani (2016). Sci. Hortic. 210, 57–64.Google Scholar
  34. 34.
    I. A. Jehangir, S. H. Wani, M. A. Bhat, A. Hussain, W. Raja, and A. Haribhushan (2017). Int. J. Curr. Microbiol. App. Sci. 6, (11), 5347–5353.Google Scholar
  35. 35.
    P. Brown, N. Bellaloui, M. Wimmer, E. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Römheld (2002). Plant Biol. 4, (02), 205–223.Google Scholar
  36. 36.
    E. A. A. Couto, C. R. Dias-Arieira, J. Kath, J. A. Homiak, and H. H. Puerari (2016). Acta Agric. Scand., Sect. B—Soil Plant Sci. 66, (4), 346–352.Google Scholar
  37. 37.
    S. Sajjadifar, K. Pal, H. Jabbari, O. Pouralimardan, F. Divsar, S. Mohammadi-Aghdam, I. Amini, and H. Hamidi (2019). Chem. Methodol. 3, (2. pp. 145–275), 226–236.Google Scholar
  38. 38.
    D. H. D. Silva, M. L. Rossi, A. E. Boaretto, N. D. L. Nogueira, and T. Muraoka (2008). Scientia Agricola 65, (6), 659–664.Google Scholar
  39. 39.
    A. Taylor and J. Sasser, Biology, Identification and Control of Root-Knot Nematodes (North Carolina State University Graphics, 1978), p. 111.Google Scholar
  40. 40.
    K. Barker and R. Hussey (1976). Phytopathology 66, (7), 851–855.Google Scholar
  41. 41.
    K. Brownlee Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve (JSTOR, New York, 1952).Google Scholar
  42. 42.
    F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, and T.-C. Chu (2007). Mater. Lett. 61, (11–12), 2402–2405.Google Scholar
  43. 43.
    M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai (2017). J. Cluster Sci. 28, (1), 59–79.Google Scholar
  44. 44.
    O. Borokhov and D. Schubert Antimicrobial Properties of Boron Derivatives, ACS Symposium Series (Oxford University Press, Oxford, 2007), pp. 412–435.Google Scholar
  45. 45.
    R. Scott, A. J. Veinot, D. Stack, P. Gormley, N. Khuong, C. M. Vogels, J. D. Masuda, F. Baerlocher, T. MacCormack, and S. A. Westcott (2018). Can. J. Chem. 96, 906–911.Google Scholar
  46. 46.
    W. Yuzheng, X. Xiangxin, and Y. He (2014). Chin. J. Chem. Eng. 22, (4), 474–479.Google Scholar
  47. 47.
    A. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Particuology 40, 141–151.Google Scholar
  48. 48.
    M. A. Maksoud, G. S. El-Sayyad, A. Ashour, A. I. El-Batal, M. A. Elsayed, M. Gobara, A. M. El-Khawaga, E. Abdel-Khalek, and M. El-Okr (2019). Microb. Pathog. 127, 144–158.Google Scholar
  49. 49.
    M. G. Naseri, E. Saion, and N. K. Zadeh (2013). Int. Nano Lett. 3, (1), 19.Google Scholar
  50. 50.
    R. Bryaskova, D. Pencheva, S. Nikolov, and T. Kantardjiev (2011). J. Chem. Biol. 4, (4), 185.Google Scholar
  51. 51.
    M. A. Maksoud, A. El-ghandour, G. S. El-Sayyad, A. Awed, R. A. Fahim, M. Atta, A. Ashour, A. I. El-Batal, M. Gobara, and E. Abdel-Khalek (2019). J. Mater. Sci.: Mater. Electron..  https://doi.org/10.1007/s10854-019-00785-4.Google Scholar
  52. 52.
    A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.Google Scholar
  53. 53.
    K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, and V. V. R. Narasimha Rao (2012). J. Non-Cryst. Solids 358, (23), 3205–3211.Google Scholar
  54. 54.
    K. K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, and V. N. Rao (2014). J. Membr. Sci. 454, 200–211.Google Scholar
  55. 55.
    N. F. Himma, A. K. Wardani, N. Prasetya, P. T. Aryanti, and I. G. Wenten. Rev. Chem. Eng.Google Scholar
  56. 56.
    W. H. Eisa, Y. K. Abdel-Moneam, Y. Shaaban, A. A. Abdel-Fattah, and A. M. A. Zeid (2011). Mater. Chem. Phys. 128, (1–2), 109–113.Google Scholar
  57. 57.
    K. N. Kumar, K. Sivaiah, and S. Buddhudu (2014). J. Lumin. 147, 316–323.Google Scholar
  58. 58.
    A. Abdelghany, E. Abdelrazek, and D. Rashad (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 302–308.Google Scholar
  59. 59.
    S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, and T. Hattori (2006). Spectrochim. Acta A Mol. Biomol. Spectrosc. 65, (5), 1234–1240.Google Scholar
  60. 60.
    E. Abdelrazek, A. Abdelghany, S. Badr, and M. Morsi (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1877–1890.Google Scholar
  61. 61.
    A. Abdelghany, E. Abdelrazek, S. Badr, and M. Morsi (2016). Mater. Des. 97, 532–543.Google Scholar
  62. 62.
    P.-Y. Silvert, R. Herrera-Urbina, and K. Tekaia-Elhsissen (1997). J. Mater. Chem. 7, (2), 293–299.Google Scholar
  63. 63.
    B. Sadeghi, M. Sadjadi, and A. Pourahmad (2008). Int. J. Nanosci. Nanotechnol. 4, (1), 3–12.Google Scholar
  64. 64.
    Z. Zhang, B. Zhao, and L. Hu (1996). J. Solid State Chem. 121, (1), 105–110.Google Scholar
  65. 65.
    Y. Wang and H. Wang (2009). Radiat. Phys. Chem. 78, (3), 234–237.Google Scholar
  66. 66.
    A. I. El-Batal, A. A. Farrag, M. A. Elsayed, and A. M. El-Khawaga (2016). Bioengineering 3, (2), 14.Google Scholar
  67. 67.
    A. I. El-Batal, F. A. E.-L. Gharib, S. M. Ghazi, and A. Z. Hegazi (2016). Nanomater. Nanotechnol. 6, 13.Google Scholar
  68. 68.
    A. Hanora, M. Ghorab, A. I. El-Batal, and F. M. A. Mosalam (2016). J. Chem. Pharm. Res. 8, (3), 405–423.Google Scholar
  69. 69.
    H. Abou-Aly, R. Zaghloul, N. Neweigy, S. El-Sayed and A. Bahloul, Suppression of Root-Knot Nematode (Meloidogyne incognita) Activity in Tomato Using Biocontrol Agents, The 2nd Minia International Conference (Agriculture and Irrigation in Nile Basin Countries, 2015), pp. 23–25.Google Scholar
  70. 70.
    U.D.o. Health, H. Services, Toxicological Profile for Silver, TP-90-24. Atlanta, GA (1990).Google Scholar
  71. 71.
    Y. M. Amin, A. M. Hawas, A. El-Batal, and S. H. H. E. Elsayed (2015). Br. J. Pharmacol. Toxicol. 6, (2), 22–38.Google Scholar
  72. 72.
    M.-C. Caillaud, P. Lecomte, F. Jammes, M. Quentin, S. Pagnotta, E. Andrio, J. de Almeida Engler, N. Marfaing, P. Gounon, and P. Abad (2008). Plant Cell 20, (2), 423–437.Google Scholar
  73. 73.
    A.C. Baier, Regulating Nanosilver as a Pesticide, Environmental Defense Fund, February 12 (2009).Google Scholar
  74. 74.
    D. Lim, J. Y. Roh, H. J. Eom, J. Y. Choi, J. Hyun, and J. Choi (2012). Environ. Toxicol. Chem. 31, (3), 585–592.Google Scholar
  75. 75.
    H.-J. Park, S.-H. Kim, H.-J. Kim, and S.-H. Choi (2006). Plant Pathol. J. 22, (3), 295–302.Google Scholar
  76. 76.
    Y.-K. Jo, B. H. Kim, and G. Jung (2009). Plant Dis. 93, (10), 1037–1043.Google Scholar
  77. 77.
    P. Beyli, M. Doğan, Z. Gündüz, M. Alkan, and Y. Turhan (2018). Adv. Mater. Sci. 18, (1), 28–36.Google Scholar
  78. 78.
    W. Akbar, M. R. Noor, K. Kowal, T. Syed, T. Soulimane, and G. B. Basim (2017). Adv. Powder Technol. 28, (2), 596–610.Google Scholar
  79. 79.
    D. G. Blevins and K. M. Lukaszewski (1998). Annu. Rev. Plant Biol. 49, (1), 481–500.Google Scholar
  80. 80.
    F. Shireen, M. Nawaz, C. Chen, Q. Zhang, Z. Zheng, H. Sohail, J. Sun, H. Cao, Y. Huang, and Z. Bie (2018). Int. J. Mol. Sci. 19, (7), 1856.Google Scholar
  81. 81.
    M. A. Beni, A. Hatamzadeh, A. Nikbakht, M. Ghasemnezhad, and M. Zarchini (2013). J. Ornam. Hortic. Plants, 3(3).Google Scholar
  82. 82.
    H. M. Salama (2012). Int. Res. J. Biotechnol. 3, (10), 190–197.Google Scholar
  83. 83.
    V. Ramamoorthy, R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan (2001). Crop Prot. 20, (1), 1–11.Google Scholar
  84. 84.
    D. Walters, A. Newton, and G. Lyon Induced Resistance for Plant Defence (Wiley Online Library, Hoboken, 2007).Google Scholar
  85. 85.
    N. Wuyts, D. De Waele, and R. Swennen (2006). Plant Physiol. Biochem. 44, (5–6), 308–314.Google Scholar
  86. 86.
    N. Sudhakar, D. Nagendra-Prasad, N. Mohan, and K. Murugesan (2007). J. Virol. Methods 139, (1), 71–77.Google Scholar
  87. 87.
    I. Morkunas and J. Gmerek (2007). J. Plant Physiol. 164, (2), 185–194.Google Scholar
  88. 88.
    N. Strigul, L. Vaccari, C. Galdun, M. Wazne, X. Liu, C. Christodoulatos, and K. Jasinkiewicz (2009). Desalination 248, (1–3), 771–782.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Drug Radiation Research Department, Biotechnology DivisionNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  2. 2.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityNasr City, CairoEgypt

Personalised recommendations