Advertisement

Antineoplastic Effect of PAC Capped Silver Nanoparticles Promote Apoptosis in HT-29 Human Colon Cancer Cells

  • Suganya Mani
  • Mythili Gnanamangai Balasubramanian
  • Ponmurugan PonnusamyEmail author
  • Paranthaman VijayanEmail author
Original Paper
  • 11 Downloads

Abstract

Proanthocyanidin (PAC) is an anti-cancer drug that effectively treat various cancers, including colon cancer. Whereas, the chemotherapeutic potential has restricted to low bioavailability and more defects. To overcome these complications, PAC produces a selective intend of AgNPs as a medicine for cancer cells and growing modern antineoplastic promoter, an innovative nano-capped drug was enhanced bioavailability of tumor cells. The synthesized PAC-AgNPs was described by spectroscopy analysis. Phenolic compound has hydroxyl groups which are able to bind to metals and reduce the metal salt and provide stability against agglomeration was confirmed by FTIR and spherical or polygonal shape with an average size of 72.35 nm found through FE-SEM analysis, applicable for targeted delivery to specific tissues. The potential of this nano-incorporate drug had been caused apoptosis in colon cancer cells was measured. Significantly, it was found in decreasing cell growth by MTT assay, morphological changes such as membrane blebbing and chromatin condensation exhibited in AO/EB staining. At the end, the mitochondrial pathway of apoptotic cell death confirmed by cell cycle progression as well as annexin V/PI. These results strongly suggest that PAC-AgNPs could be used as a major nano-composite therapeutic drug for effectively treated with colon cancer.

Keywords

PAC-AgNPs MTT AO/EB staining Cell cycle arrest Annexin V/FITC 

Notes

Acknowledgments

The authors gratefully acknowledge the DST-INSPIRE sponsored program, Department of Science and Technology, New Delhi (REF. NO: DST/INSPIRE Fellowship/2015/IF150459). We also acknowledge Head, Department of Biotechnology, K. S. Rangasamy College of Technology for the support offered towards the study. The authors also acknowledge DST-FIST (fund for infrastructure for science and technology) FIST NO: 368 for the support given carry out the study.

References

  1. 1.
    T. Hu, L. Wang, L. Zhang, L. Lu, J. Shen, R. L. Chan, M. Li, W. K. Wu, K. K. To, and C. H. Cho (2015). Phytomedicine 22, 536.CrossRefGoogle Scholar
  2. 2.
    S. R. Satapathy, P. Mohapatra, R. Preet, D. Das, B. Sarkar, T. Choudhuri, M. D. Wyatt, and C. N. Kundu (2013). Nanomedicine (Lond) 8, 1307.CrossRefGoogle Scholar
  3. 3.
    P. Zhang, M. Xi, L. Zhao, B. Qiu, H. Liu, Y. H. Hu, and M. Z. Liu (2015). Radiother. Oncol. 116, 257.CrossRefGoogle Scholar
  4. 4.
    T. Asano, Y. Hirohashi, T. Torigoe, T. Mariya, R. Horibe, T. Kuroda, Y. Tabuchi, H. Yasuda, M. Mizuuchi, A. Takahashi, H. Asanuma, T. Hasegawa, T. Satio, and N. Sato (2016). Oncotarget 7, 11223.CrossRefGoogle Scholar
  5. 5.
    E. Blanco, A. Hsiao, R. G. U. Esparza, M. G. Landry, M. F. Bernstam, and M. Ferrari (2011). Mol. Oncol. 5, 492.CrossRefGoogle Scholar
  6. 6.
    D. A. Gewirtz, M. L. Bristol, and J. C. Yalowich (2010). Curr. Opin. Investig. Drugs 11, 612.Google Scholar
  7. 7.
    N. Karthi, T. Kalaiyarasu, S. Kandakumar, P. Mariyappan, and V. Manju (2016). RSC Adv. 6, 45064.CrossRefGoogle Scholar
  8. 8.
    H. Yang, S. Y. Fung, and M. Liu (2011). Angew. Chem. Int. Ed. 50, 9643.CrossRefGoogle Scholar
  9. 9.
    R. S. Kane and A. D. Stroock (2007). Biotechnol. Prog. 23, 316.CrossRefGoogle Scholar
  10. 10.
    M. Ferrari (2005). Nat. Rev. Cancer. 5, 161.CrossRefGoogle Scholar
  11. 11.
    R. H. Liu (2004). J. Nutr. 134, 3479.CrossRefGoogle Scholar
  12. 12.
    R. Sukirtha, K. M. Priyanka, J. J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran, M. Krishnan, and S. Achiraman (2012). Process Biochem. 47, 273.CrossRefGoogle Scholar
  13. 13.
    N. Khan, F. Afaq, and H. Mukhtar (2008). Antioxid. Redox Signal. 10, 475.CrossRefGoogle Scholar
  14. 14.
    P. V. Rao, P. Sujana, T. Vijayakanth, and M. D. Naidu (2012). Asian Pac. J. Trop. Dis. 2, 327.CrossRefGoogle Scholar
  15. 15.
    Y. Lu and R. I. Mahato Pharmaceutical Perspectives of Cancer Therapeutics (Springer, Berlin, 2009).CrossRefGoogle Scholar
  16. 16.
    P. Satchell, J. Gutmann, and D. Witherspoon (2003). Int. Endod. J. 36, 237.CrossRefGoogle Scholar
  17. 17.
    P. Greenwald (2002). BMJ 324, 714.CrossRefGoogle Scholar
  18. 18.
    G. W. Sledge, E. P. Mamounas, G. N. Hortobagyi, H. J. Burstein, P. J. Goodwin, and A. C. Wolff (2014). J. Clin. Oncol. 32, 1979.CrossRefGoogle Scholar
  19. 19.
    P. Sanpui, A. Chattopadhyay, and S. S. Ghosh (2011). ACS Appl. Mater. Interfaces 3, 218.CrossRefGoogle Scholar
  20. 20.
    D. D. Newmeyer and F. S. Miller (2003). Cell 112, 481.CrossRefGoogle Scholar
  21. 21.
    V. C. Mazurak, R. E. Burrell, E. E. Tredget, M. T. Clandinin, and C. J. Field (2007). Burns 33, 52.CrossRefGoogle Scholar
  22. 22.
    M. Safavi, N. Esmati, S. K. Ardestani, S. Emami, S. Ajdari, J. Davoodi, A. Shafiee, and A. Foroumadi (2012). Eur. J. Med. Chem. 58, 573.CrossRefGoogle Scholar
  23. 23.
    H. R. Kim, D. Y. Shin, Y. J. Park, C. W. Park, S. M. Oh, and K. H. Chung (2014). J. Toxicol. Sci. 39, 401.CrossRefGoogle Scholar
  24. 24.
    S. Elmore (2007). Toxicol. Pathol. 35, 495.CrossRefGoogle Scholar
  25. 25.
    S. Gurunathan, J. W. Han, V. Eppakayala, M. Jeyaraj, and J. H. Kim (2013). Biomed. Res. Int. 53, 5796.Google Scholar
  26. 26.
    S. N. Ostad, S. Dehnad, Z. E. Nazari, S. T. Fini, N. Mokhtari, M. Shakibaie, and A. R. Shahverdi (2010). Avicenna J. Med. Biotechnol. 2, 187.Google Scholar
  27. 27.
    P. Durai, A. Chinnasamy, B. Gajendran, M. Ramar, S. Pappu, G. Kasivelu, and A. Thirunavukkarasu (2014). Eur. J. Med. Chem. 84, 90.CrossRefGoogle Scholar
  28. 28.
    A. Meshkini and R. Yazdanparast (2012). Exp. Toxicol. Pathol. 64, 357.CrossRefGoogle Scholar
  29. 29.
    B. Brodska and A. Holoubek (2011). Oxidative Med. Cell. Longev. 1, 1.CrossRefGoogle Scholar
  30. 30.
    P. K. Manga Veni, G. Devendra Vijaya, P. Durga, and P. S. Bhushanavathi (2017). J. Chem. Pharm. Sci. 10, 583.Google Scholar
  31. 31.
    L. Sun, L. Wang, S. Yonghai, C. Guo, Y. Sun, C. Peng, Z. Liu, and Z. Li (2008). Appl. Surf. Sci. 254, 2581.CrossRefGoogle Scholar
  32. 32.
    J. Verma, J. Kanoujia, P. Parashar, C. B. Tripathi, and S. A. Saraf (2017). Drug Deliv. Transl. Res. 7, 77.CrossRefGoogle Scholar
  33. 33.
    K. V. Srivatsan, N. Duraipandy, S. Begum, R. Lakra, U. Ramamurthy, P. S. Korrapati, and M. S. Kiran (2015). Int. J. Biol. Macromol. 75, 306.CrossRefGoogle Scholar
  34. 34.
    G. Y. Yu and G. Sangiliyandi (2017). Int. J. Nanomed. 12, 6537.CrossRefGoogle Scholar
  35. 35.
    P. Yugandhar and N. Savithramma (2016). Appl. Nanosci. 6, 223.CrossRefGoogle Scholar
  36. 36.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, and J. B. Kouri (2005). Nanotechnology 16, 23.CrossRefGoogle Scholar
  37. 37.
    K. Kalimuthu, R. S. Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150.CrossRefGoogle Scholar
  38. 38.
    M. Ahamed, M. S. Alsalhi, and M. K. J. Siddigai (2010). Clin. Chim. Acta 411, 1841.CrossRefGoogle Scholar
  39. 39.
    S. R. Senthilkumar and T. Sivakumar (2014). Int. J. Pharm. Pharm. Sci. 6, 461.Google Scholar
  40. 40.
    S. Hackenberg, A. Scherzed, M. Kessler, S. Hummel, A. Technau, K. Froelich, C. Ginzkey, C. Koehler, R. Hagen, and N. Kleinsasser (2011). Toxicol. Lett. 201, 27.CrossRefGoogle Scholar
  41. 41.
    D. L. A. Luna, D. A. C. Moraes, S. R. Consonni, C. D. Pereira, S. Cadore, S. Giorgio, and O. L. Alves (2016). J. Nanobiotechnol. 14, 12.CrossRefGoogle Scholar
  42. 42.
    S. W. Ahmed, H. Anwar, Shama, A. Siddiqui, M. R. Shah, A. Ahmed, and S. A. Ali (2018). Sens. Actuators B Chem. 256, 429.CrossRefGoogle Scholar
  43. 43.
    N. Karthi and V. Manju (2014). Indian J. Res. Pharm. Biotechnol. 2, 1246.Google Scholar
  44. 44.
    K. Shanthi, K. Vimala, D. Gopi, and S. Kannan (2015). RSC Adv. 5, 44998.CrossRefGoogle Scholar
  45. 45.
    R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, and S. Kannan (2012). Process Biochem. 47, 2405.CrossRefGoogle Scholar
  46. 46.
    K. Satyavani, S. Gurudeeban, T. Ramanathan, and T. Balasubramanian (2011). Sched. J. Nanobiotechnol. 9, 43.CrossRefGoogle Scholar
  47. 47.
    M. A. Navo, J. A. Smith, A. Gaikwad, T. Burke, J. Brown, and L. M. Ramondetta (2008). Pharmacology 62, 483.Google Scholar
  48. 48.
    A. Ishaque, M. A. Rubeai, and M. Portner Animal Cell Biotechnology: Methods and Protocols, vol. 24 (Humana Press, Totowa, 2007), p. 285.CrossRefGoogle Scholar
  49. 49.
    Y. Yuan, C. Liu, J. Qian, J. Wang, and Y. Zhang (2010). Biomaterials 31, 730.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyK. S. Rangasamy College of TechnologyTiruchengodeIndia
  2. 2.Department of BotanyBharathiar UniversityCoimbatoreIndia
  3. 3.School of Chemistry and Physics, Pietermaritzburg CampusUniversity of KwaZulu-NatalScottsvilleSouth Africa

Personalised recommendations