Hydrogen Production from Water Splitting: Fabrication of ZnO Nanorod Decorated Cu NW Heterogeneous Hybrid Structures for Photocatalytic Applications

  • K. Mallikarjuna
  • M. Kotesh Kumar
  • B. V. Subba Reddy
  • Haekyoung KimEmail author
Original Paper


Presently, photocatalytic hydrogen generation from water splitting has attractive limelight research towards accomplish green globalization (zero CO2 emission) and considered as fuel source of the future due to their high energy content. Heterogeneous semiconductor/metal hybrid structures are receiving increased attention because of their advanced optical, electrical, and catalytic properties, which result from synergic effects. Herein, we developed an approach to fabricate interwoven Cu core nanowires (Cu NWs) decorated with different weight of ZnO nanorods (ZnO NRs) for photocatalytic applications. The bandgaps of the prepared hybrid structures were calculated by using UV–Vis spectra, their crystalline nature was examined with XRD, the morphology of nanostructures was studied by SEM, and their elemental composition and oxidation states were analyzed by XPS. Their photocatalytic activity was investigated for the production of hydrogen and dye (Rhodamine B) degradation. The Cu NW–ZnO NR hetero-assemblies were found to exhibit high photocatalytic properties, due to the synergetic effects of the unique semiconductor/metal heterojunction. The optimized CuZ2 composite exhibited 7.2 times H2-production and 6.2 times degradation of RhB greater than pure ZnO, respectively. Moreover, ZnO-nanorods can harvest solar light to generate photoelectrons, with subsequent electron transfer through the Cu NWs that might favor photocatalytic processes for many energy applications.


Hydrogen production ZnO-nanorods ZnO/Cu NWs Heterogeneous structures Photo-catalysis 


Supplementary material

10876_2019_1504_MOESM1_ESM.docx (167 kb)
Supplementary material 1 (DOCX 166 kb)


  1. 1.
    A. Kudo and Y. Miseki (2009). Chem. Soc. Rev. 38, 253.CrossRefGoogle Scholar
  2. 2.
    J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, and S. Z. Qiao (2018). Adv. Mater. 30, 1800128.CrossRefGoogle Scholar
  3. 3.
    K. Wenderich and G. Mu (2016). Chem. Rev. 116, 14587.CrossRefGoogle Scholar
  4. 4.
    Z. C. Zhang, B. Xu, and X. Wang (2014). Chem. Soc. Rev. 43, 7870.CrossRefGoogle Scholar
  5. 5.
    J. S. Lee, E. V. Shevchenko, and D. V. Talapin (2008). J. Am. Chem. Soc. 130, 9673.CrossRefGoogle Scholar
  6. 6.
    S. I. Naya, T. Kume, R. Akashi, M. Fujishima, and H. Tada (2018). J. Am. Chem. Soc. 140, 1251.CrossRefGoogle Scholar
  7. 7.
    R. Costi, A. E. Saunders, E. Elmalem, A. Salant, and U. Banin (2008). Nano Lett. 8, 637.CrossRefGoogle Scholar
  8. 8.
    S. S. Boxi and S. Paria (2014). Effect of silver doping on TiO2. RSC Adv. 4, 37752.CrossRefGoogle Scholar
  9. 9.
    K. Mondal and A. Sharma (2016). RSC Adv. 6, 83589.CrossRefGoogle Scholar
  10. 10.
    S. Kuriakose, B. Satpati, and S. Mohapatra (2015). Phys. Chem. Chem. Phys. 17, 25172.CrossRefGoogle Scholar
  11. 11.
    J. Gupta and D. Bahadur (2017). ACS Sustain. Chem. Eng. 5, 8702.CrossRefGoogle Scholar
  12. 12.
    Y. C. Liao, H. Y. Huang, and Y. J. Huang (2018). Appl. Catal. B 220, 264.CrossRefGoogle Scholar
  13. 13.
    C. Karunakaran, V. Rajeswari, and P. Gomathisankar (2011). Synth. React. Inorg. Met. 41, 369.CrossRefGoogle Scholar
  14. 14.
    T. Y. Peng, H. J. Lv, P. Zeng, and X. H. Zhang (2011). Chin. J. Chem. Phys. 24, 464.CrossRefGoogle Scholar
  15. 15.
    K. Yamato, A. Iwase, and A. Kudo (2015). ChemSusChem 8, 2902.CrossRefGoogle Scholar
  16. 16.
    W. Q. Cui, C. H. Xu, S. D. Zhang, L. R. Feng, S. J. Lu, and F. L. Qiu (2005). J. Photochem. Photobiol. A 175, 89.CrossRefGoogle Scholar
  17. 17.
    N. L. Wu and M. S. Lee (2004). Int. J. Hydrogen Energy 29, 1601.CrossRefGoogle Scholar
  18. 18.
    S. Danwittayakul, M. Jaisai, T. Koottatep, and J. Dutta (2013). Ind. Eng. Chem. Res. 52, 13629.CrossRefGoogle Scholar
  19. 19.
    K. Domen, S. Naito, T. Onishi, and K. Tamaru (1982). Chem. Phys. Lett. 92, 433.CrossRefGoogle Scholar
  20. 20.
    M. Shirzad-Siboni, A. Jonidi-Jafari, M. Farzadkia, A. Esrafili, and M. Gholami (2017). J. Environ. Manag. 186, 1.CrossRefGoogle Scholar
  21. 21.
    R. Sachan, V. Ramos, A. Malasi, S. Yadavali, B. Bartley, H. Garcia, G. Duscher, and R. Kalyanaraman (2013). Adv. Mater. 25, 2045.CrossRefGoogle Scholar
  22. 22.
    M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma (2016). Chem. Rev. 116, 3722.CrossRefGoogle Scholar
  23. 23.
    S. Wang, Y. Yu, Y. Zuo, C. Li, J. Yang, and C. Lu (2012). Nanoscale 4, 5895.CrossRefGoogle Scholar
  24. 24.
    G. R. Dillip, T. V. M. Sreekanth, and S. W. Joo (2017). Ceram. Int. 43, 6437.CrossRefGoogle Scholar
  25. 25.
    K. K. Mandari, B. S. Kwak, A. K. R. Police, and M. Kang (2017). Mater. Res. Bull. 95, 515.CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, Y. Ji, J. Li, Z. Zhong, and F. Su (2015). RSC Adv. 5, 54364.CrossRefGoogle Scholar
  27. 27.
    M. Pashchanka, R. C. Hoffmann, A. Gurlo, J. C. Swarbrick, J. Khanderi, J. Engstler, A. Issanin, and J. J. Schneider (2011). Dalton Trans. 40, 4307.CrossRefGoogle Scholar
  28. 28.
    S. Y. Lee, N. Mettlach, N. Nguyen, Y. M. Sun, and J. M. White (2003). Appl. Surf. Sci. 206, 102.CrossRefGoogle Scholar
  29. 29.
    A. Hezam, K. Namratha, Q. A. Drmosh, B. N. Chandrashekar, K. K. Sadasivuni, Z. H. Yamani, C. Cheng, and K. Byrappa (2017). CrystEngComm 19, 3299.CrossRefGoogle Scholar
  30. 30.
    E. Luévano-Hipólitoa and L. M. Torres-Martínez (2017). Mater. Sci. Eng. B 226, 223.CrossRefGoogle Scholar
  31. 31.
    T. V. M. Sreekanth, J. J. Shim, and Y. R. Lee (2017). J. Photochem. Photobiol. B 169, 90.CrossRefGoogle Scholar
  32. 32.
    D. P. Kumar, H. Park, E. H. Kim, S. Hong, M. Gopannagari, D. A. Reddy, and T. K. Kim (2018). Appl. Catal. B 224, 230.CrossRefGoogle Scholar
  33. 33.
    Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani (2013). Mater. Lett. 91, 170.CrossRefGoogle Scholar
  34. 34.
    Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang, and B. Su (2015). New J. Chem. 39, 7112.CrossRefGoogle Scholar
  35. 35.
    S. Xiao, P. Liu, W. Zhu, G. Li, D. Zhang, and H. Li (2015). Nano Lett. 15, 4853.CrossRefGoogle Scholar
  36. 36.
    S. Liu, C. Han, Z. R. Tang, and Y. J. Xu (2016). Mater. Horiz. 3, 270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.CSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations