Advertisement

Effect of Size and Composition on the Structural Stability of Pt–Ni Nanoalloys

  • Yang Yang
  • Zheng Zhao
  • Jiqin ZhuEmail author
  • Daojian ChengEmail author
Brief Communication
  • 36 Downloads

Abstract

Pt–Ni nanoalloys have attracted many attentions for their catalytic applications, but their structural stability at different sizes and compositions still remains unclear. In this work, we systematically study the equilibrium structure of the Pt–Ni nanoalloys with different sizes of 38, 55, 147 and 309 atoms and compositions using genetic algorithm (GA) method, based on the Gupta potentials. It was found that the Pt–Ni nanoalloys with the composition of Pt0.55Ni0.45 have the most stable structures among these structures. Moreover, all the most stable structures of Pt–Ni nanoalloys exhibited the icosahedron (ICO) structures at different sizes. In addition, the effect of composition on the structural stability of Pt–Ni nanoalloys can be explained by the relative atomic mixing degree of the nanoalloys measured by bond order parameter and the number of Pt–Ni bond. This work highlights a simply and useful roadmap to study the structural stability of metal nanoalloys by atomistic simulations, which is of fundamental interest for both theorists and experimentalists.

Keywords

Pt–Ni nanoalloys Structural stability Genetic algorithm 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21576008).

References

  1. 1.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 39, 845.CrossRefGoogle Scholar
  2. 2.
    C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser (2013). Nat. Mater. 12, 765.CrossRefGoogle Scholar
  3. 3.
    S. Mezzavilla, C. Baldizzone, A. C. Swertz, N. Hodnik, E. Pizzutilo, G. Polymeros, G. P. Keeley, J. Knossalla, M. Heggen, and K. Mayrhofer (2016). Acs Catal. 6, 8058.CrossRefGoogle Scholar
  4. 4.
    J. Wu, J. Zhang, Z. Peng, S. Yang, F. T. Wagner, and H. Yang (2010). J. Am. Chem. Soc. 132, 4984.CrossRefGoogle Scholar
  5. 5.
    J. Wu, L. Qi, H. You, A. Gross, J. Li, and H. Yang (2012). J. Am. Chem. Soc. 134, 11880.CrossRefGoogle Scholar
  6. 6.
    Y. Wu, S. Cai, D. Wang, W. He, and Y. Li (2012). J. Am. Chem. Soc. 134, 8975.CrossRefGoogle Scholar
  7. 7.
    D. Cheng, S. Yuan, and R. Ferrando (2013). J. Phys. Condens. Matter. 25, 355008.CrossRefGoogle Scholar
  8. 8.
    A. Radillo-Díaz, Y. Coronado, L. A. Pérez, and I. L. Garzón (2009). Eur. Phy. J. D. 52, 127.CrossRefGoogle Scholar
  9. 9.
    G. Wang, H. Wu, D. Wexler, H. Liu, and O. Savadogo (2010). J. Alloys Compd. 503, L1.CrossRefGoogle Scholar
  10. 10.
    P. C. Di and F. Baletto (2011). Phys. Chem. Chem. Phys. 13, 7701.CrossRefGoogle Scholar
  11. 11.
    M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, and M. M. Tessema (2012). J. Am. Chem. Soc. 134, 8535.CrossRefGoogle Scholar
  12. 12.
    C. Wei, Z. Zhao, A. Fisher, J. Zhu, and D. Cheng (2016). J. Cluster Sci. 27, 1.CrossRefGoogle Scholar
  13. 13.
    J. Holland (1992). Ann Arbor. 6, 126.Google Scholar
  14. 14.
    L. D. Lloyd, R. L. Johnston, and S. Salhi (2014). Lect. Notes in Comput. Sc. 3103, 1316.CrossRefGoogle Scholar
  15. 15.
    S. E. Schönborn, S. Goedecker, S. Roy, and A. R. Oganov (2009). J. Chem. Phys. 130, 9911.Google Scholar
  16. 16.
    C. Fabrizio and R. Vittorio (1993). Phys. Rev. B Condens. Mater. 48, 22.CrossRefGoogle Scholar
  17. 17.
    D. Cheng and W. Wang (2012). Nanoscale 4, 2408.CrossRefGoogle Scholar
  18. 18.
    J. H. Mokkath and U. Schwingenschlögl (2013). J. Phys. Chem. C. 117, 9275.CrossRefGoogle Scholar
  19. 19.
    G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B. C. Curley, L. D. Lloyd, and R. L. Johnston (2005). J. Chem. Phys. 122, 194308.CrossRefGoogle Scholar
  20. 20.
    C. Massen, T. V. Mortimerjones, and R. L. Johnston (2002). J. Chem. Soc. Dalton Trans. 23, 4375.CrossRefGoogle Scholar
  21. 21.
    D. B. Fogel (1997). B. Math. Biol. 59, 199.CrossRefGoogle Scholar
  22. 22.
    R. L. Johnston (2003). Dalton Trans. 22, 4193.CrossRefGoogle Scholar
  23. 23.
    F. Baletto, C. Mottet, and R. Ferrando (2003). Phys. Rev. Lett. 90, 135504.CrossRefGoogle Scholar
  24. 24.
    G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando (2004). Phys. Rev. Lett. 93, 105503.CrossRefGoogle Scholar
  25. 25.
    B. Francesca and F. Riccardo (2005). Rev. Mod. Phys. 77, 371.CrossRefGoogle Scholar
  26. 26.
    M. Molayem, V. G. Grigoryan, and M. Springborg (2011). J. Phys. Chem. C. 115, 22148.CrossRefGoogle Scholar
  27. 27.
    Z. Zhao, M. Li, D. Cheng, and J. Zhu (2014). Chem. Phys. 441, 152.CrossRefGoogle Scholar
  28. 28.
    L. L. Wang and D. D. Johnson (2009). J. Am. Chem. Soc. 131, 14023.CrossRefGoogle Scholar
  29. 29.
    G. G. Guisbiers, R. N. Mendoza-Cruz, L. Baza´n-Dı´az, J. J. Vela´zquez-Salazar, R. Mendoza-Perez, J. A. Robledo-Torres, J. L. Rodriguez-Lopez, J. M. Montejano-Carrizales, R. L. Whetten, and M. Jose´-Yacama´n (2015). Acs Nano. 10, 188.CrossRefGoogle Scholar
  30. 30.
    F. Aqra and A. Ayyad (2011). Appl. Surf. Sci. 257, 6372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations