Advertisement

Facile Synthesis of TiO2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli

  • Mónica Andrea Vargas
  • Jorge E. Rodríguez-PáezEmail author
Original Paper
  • 19 Downloads

Abstract

In this paper we report the antibacterial activity in the absence of UV–Vis irradiation of TiO2 nanoparticles, in amorphous, anatase and rutile phases, obtained by the sol–gel process, on Escherichia coli strains. The synthesized TiO2 powders were characterized using X-ray diffraction (XRD), IR spectroscopy and UV–Vis absorption, as well as scanning and transmission electron microscopies. The XRD results showed that the solids were amorphous up to a temperature of 350 °C and that when subjected to heat treatments of higher temperatures, anatase crystalline phases were obtained, at 450 °C, and rutile type at temperatures higher than 770 °C, with a sub-micron particle size (< 1 μm) and varying morphology. The inactivating effect on bacteria of synthesized TiO2 was analyzed by recording the effect of its presence on bacterial strains of E. coli. To this end, the synthesized TiO2 in its amorphous (am-TiO2), anatase (a-TiO2) or rutile (r-TiO2) phases, at different concentrations, was incorporated into the E. coli cultures, placing aluminum foil over the strains to simulate darkness. Although all the phases of the TiO2 synthesized present reasonable antibacterial activity, the highest efficiency is seen in the cultures treated with r-TiO2.

Keywords

TiO2 nanoparticles Sol–gel process Characterization Amorphous–anatase–rutile phases Bacterial inactivation Escherichia coli In vitro method Counting colony forming unit 

Notes

Acknowledgements

We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work and to VRI-Unicauca for all logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

References

  1. 1.
    J. F. Banfield and D. R. Veblen (1992). Am. Miner. 77, 545–557.Google Scholar
  2. 2.
    W. H. Bauer (1961). Acta Crystallogr. A 14, 214–216.  https://doi.org/10.1107/S0365110x61000747.CrossRefGoogle Scholar
  3. 3.
    G. V. Samsonov The Oxide Handbook (Plenum Press, New York, 1982).CrossRefGoogle Scholar
  4. 4.
    X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza (2001). Int. J. Hydrogen Energy 26, 1279–1287.  https://doi.org/10.1016/S0360-3199(01)00063-5.CrossRefGoogle Scholar
  5. 5.
    F. A. Grant (1959). Rev. Mod. Phys. 31, 646–674.  https://doi.org/10.1103/RevModPhys.31.646.CrossRefGoogle Scholar
  6. 6.
    L. Brohan, A. Verbaere, M. Tournoux, and G. Demazeau (1982). Mater. Res. Bull. 17, 355–361.  https://doi.org/10.1016/0025-5408(82)90085-X.CrossRefGoogle Scholar
  7. 7.
    A. G. Dylla, G. Henkelman, and K. J. Stevenson (2013). Acc. Chem. Res. 46, 1104–1112.  https://doi.org/10.1021/ar300176y.CrossRefGoogle Scholar
  8. 8.
    L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson (2001). Nature 410, 653–654.  https://doi.org/10.1038/35070650.CrossRefGoogle Scholar
  9. 9.
    J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei (1994). J. Solid State Chem. 113, 27–36.  https://doi.org/10.1006/jssc.1994.1337.CrossRefGoogle Scholar
  10. 10.
    M. Mattesini, J. S. D. Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, and R. Ahuja (2004). Phys. Rev. B 70, 212110.  https://doi.org/10.1103/physRevB.70.212101.Google Scholar
  11. 11.
    M. Latroche, L. Brohan, R. Marchand, and M. Tournoux (1989). J. Solid State Chem. 81, 78–82.  https://doi.org/10.1016/0022-4596(89)90204-1.CrossRefGoogle Scholar
  12. 12.
    J. K. Dewhurst and J. E. Lowther (1996). Phys. Rev. B 54, R3673.  https://doi.org/10.1103/PhysRevB.54.R3673.CrossRefGoogle Scholar
  13. 13.
    M. Gopel, W. J. Moberly Chan, and L. C. De Jonghe (1997). J. Mater. Sci. 32, 6001–6008.  https://doi.org/10.1023/a:1018671212890.CrossRefGoogle Scholar
  14. 14.
    S. G. Kumar and K. S. Rao (2014). Nanoscale 6, 11574–11632.  https://doi.org/10.1039/c4nr01657b.CrossRefGoogle Scholar
  15. 15.
    U. Bach, Y. Tachinaba, J. E. Moser, S. A. Haque, J. R. Durrant, M. Graetzel, and D. R. Klug (1999). J. Am. Chem. Soc. 121, 7445–7446.  https://doi.org/10.1021/ja9915403.CrossRefGoogle Scholar
  16. 16.
    N. G. Park, J. Van de Lagemaat, and A. J. Frank (2000). J. Phys. Chem. B 104, 8989–8994.  https://doi.org/10.1021/jp9943651.CrossRefGoogle Scholar
  17. 17.
    M. Kaneko and I. Okura Photocatalysis: Science and Technology (Kodansha-Spring Verlag, New York, 2002).Google Scholar
  18. 18.
    M. Anpo and P. V. Kamat Environmentally Benign Photocatalysts (Springer, New York, 2010).CrossRefGoogle Scholar
  19. 19.
    G. Nogami, R. Shiratsuchi, and S. Ohkubo (1991). J. Electrochem. Soc. 138, 751–758.  https://doi.org/10.1149/1.2085670.CrossRefGoogle Scholar
  20. 20.
    E. Topoglidis, A. E. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, and J. R. Durrant (1998). Anal. Chem. 70, 5111–5113.  https://doi.org/10.1021/ac980764l.CrossRefGoogle Scholar
  21. 21.
    J. Geserick, T. Froeschl, N. Huesing, G. Kucerova, M. Makosch, T. Diemant, S. Ecckle, and R. J. Behm (2011). Dalton Trans. 40, 3269–3286.  https://doi.org/10.1039/C0DT00911C.CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, A. Kladi, and X. E. Verykios (1994). J. Phys. Chem. 98, 6804–6811.  https://doi.org/10.1021/j100078a024.CrossRefGoogle Scholar
  23. 23.
    M. M. Shubert, V. Plzak, J. Garche, and R. J. Behm (2001). Catal. Lett. 76, 143–150.  https://doi.org/10.1023/A:1012365710979.CrossRefGoogle Scholar
  24. 24.
    W. P. Hsu, R. Yu, and E. Matijevic (1993). J. Colloid Interface Sci. 156, 56–65.  https://doi.org/10.1006/jcis.1993.1080.CrossRefGoogle Scholar
  25. 25.
    P. Kubiak, T. Froeschl, N. Huesing, U. Hoermann, U. Kaiser, R. Schiller, C. K. C. K. Weiss, K. Landfester, and M. Wohlfahrt-Mhrens (2011). Small 7, 1690–1696.  https://doi.org/10.1002/smll.201001943.CrossRefGoogle Scholar
  26. 26.
    L. Kavan (2012). Chem. Rev. 12, 131–142.  https://doi.org/10.1002/tcr.201100012.Google Scholar
  27. 27.
    A. Mills, H. R. Davis, and D. Worsley (1993). Chem. Soc. Rev. 22, 417–425.  https://doi.org/10.1039/CS9932200417.CrossRefGoogle Scholar
  28. 28.
    P. Pichat Photocatalysis and Water Purification (Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, 2013).  https://doi.org/10.1002/9783527645404.CrossRefGoogle Scholar
  29. 29.
    P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby (1999). Appl. Environ. Microbiol. 65, 4094–4098.Google Scholar
  30. 30.
    N. Cioffi and M. Rai Nano-antimicrobials: Progress and Prospects in Section I Synthesis and Characterization of Novel Nanomicrobials (Springer, Berlin, 2012).CrossRefGoogle Scholar
  31. 31.
    Y. Paz, Z. Luo, L. Rabenberg, and A. Heller (1995). J. Mater. Res. 10, 2842–2848.  https://doi.org/10.1557/JMR.1995.2842.CrossRefGoogle Scholar
  32. 32.
    G. Eranna Metal Oxide Nanostructures as Gas Sensing Devices (Taylor & Francis, Boca Raton, 2012).Google Scholar
  33. 33.
    X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891–2959.  https://doi.org/10.1021/cr0500535.CrossRefGoogle Scholar
  34. 34.
    T. Fröschl, U. Hörmann, P. Kubiak, G. Kucerová, M. Pfanzelt, C. K. Eiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfester, and M. Wohlfahrt-Mehrens (2012). Chem. Soc. Rev. 41, 5313–5360.  https://doi.org/10.1039/C2CS35013K.CrossRefGoogle Scholar
  35. 35.
    Y. Bai, I. Mora-Seró, F. D. Angelis, J. Bisquert, and P. Wang (2014). Chem. Rev. 114, 1095–10130.  https://doi.org/10.1021/cr400606n.Google Scholar
  36. 36.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li (2014). Chem. Rev. 114, 9987–10043.  https://doi.org/10.1021/cr500008u.CrossRefGoogle Scholar
  37. 37.
    U. Diebold (2003). Surf. Sci. Rep. 48, 53–229.  https://doi.org/10.1016/S0167-5729(02)00100-0.CrossRefGoogle Scholar
  38. 38.
    V. V. Hong, H. Zung, and N. H. B. Trong (2007). Eur. Phys. J. D 44, 515–524.  https://doi.org/10.1140/epjd/e2007-00186-5.CrossRefGoogle Scholar
  39. 39.
    H. Zhang, B. Chen, and J. F. Banfield (2008). Phys. Rev. B 78, 214106.  https://doi.org/10.1103/PhysRevB.78.214106.CrossRefGoogle Scholar
  40. 40.
    V. V. Hong in K. S. Sattler (ed.), Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, New York, 2010), pp. 1-1–1-10.Google Scholar
  41. 41.
    V. V. Hong (2011). Chem. Phys. Res. J. 4, 43–62.Google Scholar
  42. 42.
    L. Romano, V. Privitera, and C. Jagadish Defects in Semiconductors, Semiconductors and Semimatels, vol. 91 (Academic Press, San Diego, 2015).Google Scholar
  43. 43.
    U. I. Gaya Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Dordrecht, 2014).CrossRefGoogle Scholar
  44. 44.
    M. K. Nowotny, L. R. Sheppard, and J. Nowotny (2008). J. Phys. Chem. C 112, 5275–5300.  https://doi.org/10.1021/jp077275m.CrossRefGoogle Scholar
  45. 45.
    X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu (2013). Nanoscale 5, 3601–3614.  https://doi.org/10.1039/c3nr00476g.CrossRefGoogle Scholar
  46. 46.
    Z. Wu, S. Cao, C. Zhang, and L. Piao (2017). Nanotechnology 28, 275706.  https://doi.org/10.1088/1361-6528/aa7373.CrossRefGoogle Scholar
  47. 47.
    V. Gurylev, M. Mishra, Y. C. Su, and T. P. Perng (2016). Chem. Commun. 52, 7604–7607.  https://doi.org/10.1039/C5CC10610A.CrossRefGoogle Scholar
  48. 48.
    M. Kong, Y. Z. Li, X. Chen, T. T. Tian, P. F. Fang, F. Zheng, and X. J. Zhao (2011). J. Am. Chem. Soc. 133, 16414–16417.  https://doi.org/10.1021/ja207826q.CrossRefGoogle Scholar
  49. 49.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson (2010). Chem. Rev. 110, 6595–6663.  https://doi.org/10.1021/cr900356p.CrossRefGoogle Scholar
  50. 50.
    S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes (2010). ACS Nano 4, 1259–1273.  https://doi.org/10.1021/nn9015423.CrossRefGoogle Scholar
  51. 51.
    C. C. Mercado, F. J. Knorr, J. L. McHale, S. M. Usmani, A. S. Chimura, and L. V. Saraf (2012). J. Phys. Chem. C 116, 10796–10804.  https://doi.org/10.1021/jp301680d.CrossRefGoogle Scholar
  52. 52.
    J. Wu, H. Lu, X. Zhang, F. Raziq, Y. Qu, and L. Jing (2016). Chem. Commun. 52, 5027–5029.  https://doi.org/10.1039/C6CC00772D.CrossRefGoogle Scholar
  53. 53.
    Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, and Z. Sun (2015). Nano Res. 8, 4061–4071.  https://doi.org/10.1007/s12274-015-0917-5.CrossRefGoogle Scholar
  54. 54.
    V. Srivastava, D. Gusain, and Y. Chandra Sharma (2015). Ind. Eng. Chem. Res. 54, 6209–6233.  https://doi.org/10.1021/acs.iecr.5b01610.CrossRefGoogle Scholar
  55. 55.
    N. Durán, S. S. Guterres, and O. L. Alves Nanotoxicology: Materials, Methodologies and Assessments (Springer, New York, 2014).  https://doi.org/10.1007/978-1-4614-8993-1.CrossRefGoogle Scholar
  56. 56.
    A. Albanese, P. S. Tang, and W. C. W. Chan (2012). Annu. Rev. Biomed. Eng. 14, 1–16.  https://doi.org/10.1146/annurev-bioeng-071811-150124.CrossRefGoogle Scholar
  57. 57.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake (1985). FEMS Microbiol. Lett. 29, 211–214.  https://doi.org/10.1111/j.1574-6968.1985.tb00864.x.CrossRefGoogle Scholar
  58. 58.
    H. M. Yadav, J. S. Kim, and S. H. Pawar (2016). Korean J. Chem. Eng. 33, 1989–1998.  https://doi.org/10.1007/s11814-016-0118-2.CrossRefGoogle Scholar
  59. 59.
    O. Akhavan and E. Ghaderi (2010). Surf. Coat. Technol. 204, 3676–3683.  https://doi.org/10.1016/j.surfcoat.2010.04.048.CrossRefGoogle Scholar
  60. 60.
    F. Grande and P. Tucci (2016). Mini. Rev. Med. Chem. 16, 762–769.  https://doi.org/10.2174/1389557516666160321114341.CrossRefGoogle Scholar
  61. 61.
    S. M. Dizaj, F. Lotfipour, M. Barzegar-Jajali, M. H. Zarrintan, and K. Adibkla (2014). Mater. Sci. Eng. C 44, 278–284.  https://doi.org/10.1016/j.msec.2014.08.031.CrossRefGoogle Scholar
  62. 62.
    A. S. Roy, A. Parveen, A. R. Koppalkar, and M. Prasad (2013). J. Biomater. Nanobiotechnol. 1, 37–41.  https://doi.org/10.4236/jbnb.2010.11005.CrossRefGoogle Scholar
  63. 63.
    I. Fenoglio, G. Greco, S. Livraghi, and B. Fubini (2009). Chem. Eur. J. 15, 4614–4621.  https://doi.org/10.1002/chem.200802542.CrossRefGoogle Scholar
  64. 64.
    M. Li, M. E. Noriega-Trevino, N. Nino-Matínez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, and E. M. V. Hock (2011). Environ. Sci. Technol. 45, 8989–8995.  https://doi.org/10.1021/es201675m.CrossRefGoogle Scholar
  65. 65.
    E. Albert, P. A. Albouy, A. Ayral, P. Basa, G. Csik, N. Nagy, S. Rouldés, V. Rouessac, G. Sáfrán, A. Suhajda, Z. Zolnai, and Z. Hórvölgyi (2015). RSC Adv. 5, 59070.  https://doi.org/10.1039/c5ra05990a.CrossRefGoogle Scholar
  66. 66.
    I. Daou, N. Moukrad, O. Zegaoui, and F. R. Filai (2017). Water Sci. Technol. 77, 1238–1249.  https://doi.org/10.2166/wst.2017.647.CrossRefGoogle Scholar
  67. 67.
    K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto (2010). Ceram. Int. 36, 497–506.  https://doi.org/10.1016/j.ceramint.2009.09.026.CrossRefGoogle Scholar
  68. 68.
    V. L. Prasanna and R. Vijayaraghavan (2015). Langmuir 31, 9155–9162.  https://doi.org/10.1021/acs.langmuir.5b002266.CrossRefGoogle Scholar
  69. 69.
    A. Joe, S. H. Park, K. D. Shim, D. J. Kim, K. H. Jhee, H. W. Lee, C. H. Heo, H. M. Kim, and E.-S. Jang (2017). J. Ind. Eng. Chem. 45, 430–439.  https://doi.org/10.1016/j.jiec.2016.10.013.CrossRefGoogle Scholar
  70. 70.
    J. R. Gurr, A. S. S. Wang, C. H. Chen, and K. Y. Jan (2005). Toxicology 213, 66–73.  https://doi.org/10.1016/j.tox.2005.CrossRefGoogle Scholar
  71. 71.
    N. K. Gali, Z. Ning, W. Daoud, and P. Brimblecombe (2016). J. Appl. Toxicol. 36, 1355–1363.  https://doi.org/10.1002/jat.3341.CrossRefGoogle Scholar
  72. 72.
    K. Tanaka, M. F. V. Capule, and T. Hinasaga (1991). Chem. Phys. Lett. 187, 73–76.  https://doi.org/10.1016/0009-2614(91)90486-S.CrossRefGoogle Scholar
  73. 73.
    S. L. Suib, New and Future Developments in Catalysis: Solar Photocatalysis, chap. 10 (Elsevier, Amsterdam, 2013).Google Scholar
  74. 74.
    V. H. Grassian, Nanoscience and Nanotechnology: Environmental and Health Impacts, chap. 13 (Wiley, Hoboken, 2008).Google Scholar
  75. 75.
    A. Rincón and C. Pulgarin (2004). Appl. Catal. B Environ. 49, 99–112.  https://doi.org/10.1016/j.apcatb.2003.11.013.CrossRefGoogle Scholar
  76. 76.
    M. Bekbolet (1997). Water Sci. Technol. 35, 95–100.  https://doi.org/10.1016/S0273-1223(97)00241-2.CrossRefGoogle Scholar
  77. 77.
    M. Cho, H. Chung, W. Choi, and J. Yoon (2005). Appl. Environ. Microbiol. 71, 270–275.  https://doi.org/10.1128/AEM.71.1.270-275.2005.CrossRefGoogle Scholar
  78. 78.
    M. A. Vargas and J. E. Rodríguez-Páez (2017). J. Non Cryst. Solids 459, 192–205.  https://doi.org/10.1016/j.jnoncrysol.2017.01.018.CrossRefGoogle Scholar
  79. 79.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, Hoboken, 2009).Google Scholar
  80. 80.
    L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, and J. M. Thomas (1999). Phys. Chem. Chem. Phys. 1, 585–592.  https://doi.org/10.1039/A808225A.CrossRefGoogle Scholar
  81. 81.
    K. Sunada, T. Watanabe, and K. Hashimoto (2003). J. Photochem. Photobiol. A 156, 227–233.  https://doi.org/10.1016/S1010-6030(02)00434-3.CrossRefGoogle Scholar
  82. 82.
    Z. Huang, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. Smolinski, and W. Jacoby (2000). J. Photochem. Photobiol. A 130, 163–170.  https://doi.org/10.1016/S1010-6030(99)00205-1.CrossRefGoogle Scholar
  83. 83.
    M. J. Llansola-Portoles, J. J. Bergkamp, D. Finkelstein-Shapino, B. D. Sherman, G. Kadis, N. M. Dimitrijevic, D. Gust, T. A. Moore, and A. L. Moore (2014). J. Phys. Chem. A 118, 10631–10638.  https://doi.org/10.1021/jp506284q.CrossRefGoogle Scholar
  84. 84.
    D. A. Panayotov and J. R. Morris (2009). J. Phys. Chem. C 113, 15684–15691.  https://doi.org/10.1021/jp9036233.CrossRefGoogle Scholar
  85. 85.
    L. B. Xiong, J. L. Li, B. Yang, and Y. Yu (2012). J. Nanomater..  https://doi.org/10.1155/2012/831524.Google Scholar
  86. 86.
    A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Caballh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton (2010). PNAS 107, 2391–2396.  https://doi.org/10.1073/pnas.0911349107.CrossRefGoogle Scholar
  87. 87.
    A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson (2009). Nat. Mater. 8, 543–557.  https://doi.org/10.1038/nmat2442.CrossRefGoogle Scholar
  88. 88.
    Q. X. Mu, G. B. Jiang, L. X. Chen, H. Y. Zhou, D. Fourches, A. Tropsha, and B. Yan (2014). Chem. Rev. 114, 7740–7781.  https://doi.org/10.1021/cr400295a.CrossRefGoogle Scholar
  89. 89.
    V. M. Longo, F. C. Picon, C. Zamperini, A. R. Albuquerque, J. R. Sambrano, C. E. Vergani, A. L. Machado, J. Andrés, A. C. Hernandes, J. A. Varela, and E. Longo (2013). Chem. Phys. Lett. 577, 114–120.  https://doi.org/10.1016/j.cplett.2013.05.056.CrossRefGoogle Scholar
  90. 90.
    T. Bak, J. Nowotny, N. J. Sucher, and E. Wachsman (2011). J. Phys. Chem. C 115, 15711–15738.  https://doi.org/10.1021/jp2027862.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mónica Andrea Vargas
    • 1
    • 2
  • Jorge E. Rodríguez-Páez
    • 1
    Email author
  1. 1.Grupo CYTEMAC, Departamento de físicaUniversidad del CaucaPopayánColombia
  2. 2.University of ValleCaliColombia

Personalised recommendations