Advertisement

Atomic Structures and Electronic Properties of Large-Sized GeN Clusters (N = 45, 50, 55, 60, 65, 70) by First-Principles Global Search

  • Di Wu
  • Ruili Shi
  • Qiuying Du
  • Xue Wu
  • Xiaoqing Liang
  • Xiaoming Huang
  • Linwei Sai
  • Jijun ZhaoEmail author
Original Paper
  • 11 Downloads

Abstract

A two-step unbiased global search was performed to explore the lowest-energy structures of large GeN clusters with N = 45–70 atoms. It has been revealed that the most stable structures for these large-sized Ge clusters are stuffed cages. Based on the lowest-energy structures, the theoretical results for the size-dependent structural transition, binding energy and ionization potential compare well with the available experimental data. Overall speaking, the structural characteristics and electronic properties of GeN clusters in the considered size range gradually approach the bulk limits, but still with certain deviations.

Keywords

Germanium cluster Structure Global search 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41641038, 11604039, 11704057). We acknowledge the Supercomputing Center of Dalian University of Technology for the computing resource.

Supplementary material

10876_2019_1498_MOESM1_ESM.doc (12.5 mb)
Supplementary material 1 (DOC 12845 kb)

References

  1. 1.
    J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower (1994). Phys. Rev. Lett. 73, 2063.CrossRefGoogle Scholar
  2. 2.
    Q. L. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, and R. E. Smalley (1988). J. Chern. Phys. 88, 1670.CrossRefGoogle Scholar
  3. 3.
    Y. Negishi, H. Kawamata, T. Hayase, M. Gomei, R. Kishi, F. Hayakawa, A. Nakajima, and K. Kaya (1997). Chem. Phys. Lett. 269, 199.CrossRefGoogle Scholar
  4. 4.
    Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima, and K. Kaya (1998). Chem. Phys. Lett. 294, 370.CrossRefGoogle Scholar
  5. 5.
    K. Fuke and S. Yoshida (1999). Eur. Phys. J. D 9, 123.CrossRefGoogle Scholar
  6. 6.
    S. Yoshida and K. Fuke (1999). J. Chem. Phys. 111, 3880.CrossRefGoogle Scholar
  7. 7.
    S. Schäfer and R. Schäfer (2008). Phys. Rev. B 77, 205211.CrossRefGoogle Scholar
  8. 8.
    X. Liu, X. Lei, J. Le, and C. Ouyang (2015). J. Clust. Sci. 26, 1001.CrossRefGoogle Scholar
  9. 9.
    H. U. Rehman, M. Springborg, and Y. Dong (2009). Eur. Phys. J. D 52, 39.CrossRefGoogle Scholar
  10. 10.
    J. J. Zhao, J. L. Wang, and G. H. Wang (2000). Phys. Lett. A 275, 281.CrossRefGoogle Scholar
  11. 11.
    J. L. Wang, M. L. Yang, G. H. Wang, and J. J. Zhao (2003). Chem. Phys. Lett. 367, 448.CrossRefGoogle Scholar
  12. 12.
    J. L. Wang, G. H. Wang, and J. J. Zhao (2001). Phys. Rev. B 64, 205411.CrossRefGoogle Scholar
  13. 13.
    S. Bulusu, S. Yoo, and X. C. Zeng (2005). J. Chem. Phys. 122, 164305.CrossRefGoogle Scholar
  14. 14.
    L. Wang and J. J. Zhao (2008). J. Chem. Phys. 128, 024302.CrossRefGoogle Scholar
  15. 15.
    L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, C. Z. Wang, and K. M. Ho (2008). Chem. Phys. Lett. 455, 225.CrossRefGoogle Scholar
  16. 16.
    T. Truong Ba and N. Minh Tho (2011). J. Chem. Theory. Comput. 7, 1119.CrossRefGoogle Scholar
  17. 17.
    P. F. Li and B. C. Pan (2012). J. Phys.: Condens. Matter 24, 305802.Google Scholar
  18. 18.
    B. X. Li, F. S. Liang, Y. H. Zhu, J. Xu, and G. Q. Lai (2005). J. Mol. Struct. (THEOCHEM) 756, 19.CrossRefGoogle Scholar
  19. 19.
    F. S. Liang and B. X. Li (2004). Phys. Lett. A 328, 407.CrossRefGoogle Scholar
  20. 20.
    S. J. Ma and G. H. Wang (2006). J. Mol. Struct. (THEOCHEM) 767, 75.CrossRefGoogle Scholar
  21. 21.
    S. Yoo and X. C. Zeng (2006). J. Chem. Phys. 124, 184309.CrossRefGoogle Scholar
  22. 22.
    L. Z. Zhao, W. C. Lu, W. Qin, C. Z. Wang, and K. M. Ho (2008). J. Phys. Chem. A 112, 5815.CrossRefGoogle Scholar
  23. 23.
    W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.CrossRefGoogle Scholar
  24. 24.
    Y. Tai, J. Murakami, C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2003). Eur. Phys. J. D 24, 295.CrossRefGoogle Scholar
  25. 25.
    W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, G. J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Chem. Phys. 131, 124507.CrossRefGoogle Scholar
  26. 26.
    W. C. Lu, C. Z. Wang, L. Z. Zhao, W. Zhang, W. Qin, and K. M. Ho (2010). Phys. Chem. Chem. Phys. 12, 8551.CrossRefGoogle Scholar
  27. 27.
    H. Li, W. Chen, X. Han, L. Li, Q. Sun, Z. Guo, and Y. Jia (2015). J. Comput. Chem. 36, 1919.CrossRefGoogle Scholar
  28. 28.
    Y. Dong, M. Springborg, Y. Pang, and F. M. Morillon (2013). Comput. Theor. Chem. 1021, 16.CrossRefGoogle Scholar
  29. 29.
    Z. F. Chen, H. J. Jiao, G. Seifert, A. H. C. Horn, D. K. Yu, T. Clark, W. Thiel, and P. Von Ragué Schleyer (2003). J. Comput. Chem. 24, 948.CrossRefGoogle Scholar
  30. 30.
    J. J. Zhao, J. L. Wang, J. Jellinek, S. Yoo, and X. C. Zeng (2005). Eur. Phys. J. D 34, 35.CrossRefGoogle Scholar
  31. 31.
    S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng (2004). J. Am. Chem. Soc. 126, 13845.CrossRefGoogle Scholar
  32. 32.
    J. J. Zhao, L. Ma, and B. Wen (2007). J. Phys.: Condens. Matter 19, 226208.Google Scholar
  33. 33.
    J. G. Wang, J. J. Zhao, L. Ma, and G. H. Wang (2007). Eur. Phys. J. D 45, 289.CrossRefGoogle Scholar
  34. 34.
    D. Wu, X. Wu, X. Q. Liang, R. L. Shi, Z. Li, X. M. Huang, and J. J. Zhao (2018). J. Phys. Chem. C 122, 11086.CrossRefGoogle Scholar
  35. 35.
    K. M. Ho, A. A. Shvartsburg, B. C. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.CrossRefGoogle Scholar
  36. 36.
    D. M. Deaven and K. M. Ho (1995). Phys. Rev. Lett. 75, 288.CrossRefGoogle Scholar
  37. 37.
    J. J. Zhao and R. H. Xie (2004). J. Comput. Theor. Nanosci. 1, 117.CrossRefGoogle Scholar
  38. 38.
    D. J. Wales and J. P. K. Doye (1997). J. Phys. Chem. A 101, 5111.CrossRefGoogle Scholar
  39. 39.
    D. J. Wales and H. A. Scheraga (1999). Science 285, 1368.CrossRefGoogle Scholar
  40. 40.
    J. J. Zhao, R. L. Shi, L. W. Sai, X. M. Huang, and Y. Su (2016). Mol. Simul. 42, 809.CrossRefGoogle Scholar
  41. 41.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  42. 42.
    B. Delley (1990). J. Chem. Phys. 92, 508.CrossRefGoogle Scholar
  43. 43.
    B. Delley (2000). J. Chem. Phys. 113, 7756.CrossRefGoogle Scholar
  44. 44.
    X. M. Huang, H. G. Xu, S. J. Lu, Y. Su, R. B. King, J. J. Zhao, and W. J. Zheng (2014). Nanoscale 6, 14617.CrossRefGoogle Scholar
  45. 45.
    X. M. Huang, S. J. Lu, X. Q. Liang, Y. Su, L. W. Sai, Z. G. Zhang, J. J. Zhao, H. G. Xu, and W. J. Zheng (2015). J. Phys. Chem. C 119, 10987.CrossRefGoogle Scholar
  46. 46.
    X. Q. Liang, X. M. Huang, Y. Su, and J. J. Zhao (2015). Chem. Phys. Lett. 634, 255.CrossRefGoogle Scholar
  47. 47.
    L. W. Sai, L. L. Tang, J. J. Zhao, J. Wang, and V. Kumar (2011). J. Chem. Phys. 135, 184305.CrossRefGoogle Scholar
  48. 48.
    X. Wu, S. J. Lu, X. Q. Liang, X. M. Huang, Y. Qin, M. D. Chen, J. J. Zhao, H. G. Xu, R. Bruce King, and W. J. Zheng (2017). J. Chem. Phys. 146, 044306.CrossRefGoogle Scholar
  49. 49.
    C. Kittel Introduction to solid state physics (Wiley, New York, 1986).Google Scholar
  50. 50.
    A. Kant and B. H. Strauss (1966). J. Chem. Phys. 45, 822.CrossRefGoogle Scholar
  51. 51.
    J. A. Dillon Jr. and H. E. Farnsworth (1957). J. Appl. Phys. 28, 174.CrossRefGoogle Scholar
  52. 52.
    B. X. Li, P. L. Cao, and D. L. Que (2000). Phys. Rev. B 61, 1685.CrossRefGoogle Scholar
  53. 53.
    Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo (2000). Appl. Phys. Lett. 77, 1182.CrossRefGoogle Scholar
  54. 54.
    A. Laref, B. Bouhafs, A. Zaoui, M. Certier, and H. Aourag (2000). Phys. Status. Solidi. B 217, 911.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Di Wu
    • 1
    • 2
  • Ruili Shi
    • 1
  • Qiuying Du
    • 1
  • Xue Wu
    • 1
  • Xiaoqing Liang
    • 1
  • Xiaoming Huang
    • 3
  • Linwei Sai
    • 4
  • Jijun Zhao
    • 1
    Email author
  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianChina
  2. 2.School of ScienceShenyang Aerospace UniversityShenyangChina
  3. 3.School of Ocean Science and TechnologyDalian University of TechnologyPanjinChina
  4. 4.Department of Mathematics and PhysicsHohai UniversityChangzhouChina

Personalised recommendations