Advertisement

Improvement of Cancer Therapy by TAT Peptide Conjugated Gold Nanoparticles

  • Ali A. Taha
  • Selma M. H. AL-JawadEmail author
  • Lamyaa F. A. AL-Barram
Original Paper
  • 12 Downloads

Abstract

Gold nanoparticles (AuNPs) are potent anticancer agent that controls drug delivery to tumors. Here, we describe the identification of TAT-Cell Penetrating Peptide (TAT-CPP) conjugated AuNPs, as a novel delivery system to the cancerous regions. TAT-peptide was modified to BSA-AuNPs [Bovine Serum Albumin (BSA) coated AuNPs] electrostatically. The binding efficiency of TAT-AuNPs was tested using Dynamic Light Scattering, UV–Vis spectrophotometer and Zeta potential. The nano-complex (BSA-AuNPs; with and without TAT-CPP) was applied against Rhabdomyosarcoma and Murine fibroblast (L20B) cancer lines, in vitro. Cytotoxicity effect was evaluated by MTT assay at 0.125, 0.25, 0.5 and 1 mg/ml concentration for 24 and 48 h incubation time. Results demonstrated that TAT-(BSA-AuNPs) exhibits significant toxicity for both cancer cell lines. TAT-CPP has improved cancer cell reduction, where cytotoxicity more than 80% has been achieved. This study was conducted to achieve the simplicity and facility in cancer therapy, where the small-sized TAT-AuNPs acts as a simple therapeutic agent in the specific delivery and targeting the deep, irregular, and complicated cancer regions in the human body. Therefore, it could replace other cancer treatment techniques, even dispense the laser irradiation in the phototherml therapy.

Keywords

Small sized gold nanoparticles BSA CPP TAT Cancer treatment 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    E. Blanco, A. Hsiao, A. P. Mann, M. G. Landry, F. Meric-Bernstam, and M. Ferrari (2011). Cancer Sci. 102, (7), 1247–1252.CrossRefGoogle Scholar
  2. 2.
    S. M. H. AL-Jawad, A. A. Taha, M. M. F. Al-Halbosiy, and L. F. A. AL-Barram (2018). Photodiagnosis Photodyn. Ther. 21, 201–210.CrossRefGoogle Scholar
  3. 3.
    V. V. Tuchin (2015). J. Biomed. Photonics Eng. 1, 2.CrossRefGoogle Scholar
  4. 4.
    T. Gould, Q. Wang, and T. J. Pfefer (2014). Biomed. Opt. Exp. 5, 832–847.CrossRefGoogle Scholar
  5. 5.
    G. Han and J. Xi (2016). Light-Med. Deep-Tissue Theranostics. 6, 2292–2294.Google Scholar
  6. 6.
    S. Jafari, S. Maleki Dizaj, and K. Adibkia (2015). Bioimpacts 5, (2), 103–111.CrossRefGoogle Scholar
  7. 7.
    A. A. Sousa, J. T. Morgan, P. H. Brown, A. Adams, M. P. Jayasekara, G. Zhang, C. J. Ackerson, M. J. Kruhlak, and R. D. Leapman (2012). Small 8, (14), 2277–2286.CrossRefGoogle Scholar
  8. 8.
    J. R. Nicol, D. Dixon, and J. A. Coulter (2015). Nanomedicine 10, (8), 1315–1326.CrossRefGoogle Scholar
  9. 9.
    R. Sawant and V. Torchilin (2010). Mol. BioSyst. 6, 628–640.CrossRefGoogle Scholar
  10. 10.
    S. Kalmodia, S. Vandhana, B. R. Tejaswini Rama, B. Jayashree, T. Sreenivasan Seethalakshmi, V. Umashankar, W. Yang, C. J. Barrow, S. Krishnakumar, and S. V. Elchuri (2016). Cancer Nanotechnol. 7, (1), 2–19.CrossRefGoogle Scholar
  11. 11.
    C. Ciobanasu, J. P. Siebrasse, and U. Kubitscheck (2010). Biophys. J. 99, (1), 153–162.CrossRefGoogle Scholar
  12. 12.
    L. Singh, R. Parboosing, H. G. Kruger, G. E. M. Maguire, and T. Govender (2016). Nanotechnology 7, 1–7.Google Scholar
  13. 13.
    T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich (2010). Nanotoxicology 4, (1), 120–137.CrossRefGoogle Scholar
  14. 14.
    L. D. F. Vasconcelos Complexes of Cell-Penetrating Peptides with Oligonucleotides Structure, Binding and Translocation in Lipid Membranes (Stockholm University, Stockholm, 2017), pp. 1–79.Google Scholar
  15. 15.
    J. H. Grossman and S. E. McNeil (2012). Phys. Today. 65, (8), 38.CrossRefGoogle Scholar
  16. 16.
    M. Umair, I. Javed, M. Rehman, A. Madni, A. Javeed, A. Ghafoor, and M. Ashraf (2016). J. Pharm. Pharm. Sci. 19, (2), 161–180.CrossRefGoogle Scholar
  17. 17.
    S. Huo, S. Jin, X. Ma, X. Xue, K. Yang, A. Kumar, P. C. Wang, J. Zhang, Z. Hu, and X. J. Liang (2014). ACS Nano. 8, (6), 5852–5862.CrossRefGoogle Scholar
  18. 18.
    I. Capek (2015). J. Nanomed. Res. 2, (1), 1–10.CrossRefGoogle Scholar
  19. 19.
    E. Oh, J. B. Delehanty, K. E. Sapsford, K. Susumu, R. Goswami, J. B. Blanco-Canosa, P. E. Dawson, J. Granek, M. Shoff, Q. Zhang, P. L. Goering, A. Huston, and I. L. Medintz (2011). ACS Nano. 5, (8), 6434–6448.CrossRefGoogle Scholar
  20. 20.
    Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y. W. Lee, S. Hou, D. F. Moyano, B. Duncan, X. J. Liang, and V. M. Rotello (2015). ACS Nano. 9, (10), 9986–9993.CrossRefGoogle Scholar
  21. 21.
    P. Wang, X. Wang, L. Wang, X. Hou, W. Liu, and C. Chen (2015). Sci. Technol. Adv. Mater. 16, (3), 1–15.CrossRefGoogle Scholar
  22. 22.
    Hyejin Park, Hiroshi Tsutsumi, and Hisakazu Mihara (2013). Biomaterials 34, 4872–4879.CrossRefGoogle Scholar
  23. 23.
    G. Guidotti, L. Brambilla, and D. Rossi (2017). Trends Pharmacol Sci. 38, (4), 406–424.CrossRefGoogle Scholar
  24. 24.
    F. Madani, S. Lindberg, U. Langel, S. Futaki, and A. Gräslund (2011). J Biophys. 2011, 414729.CrossRefGoogle Scholar
  25. 25.
    S. Trabulo, A. L. Cardoso, M. Mano, and M. C. P. Lima (2010). Pharmaceuticals 3, (4), 961–993.CrossRefGoogle Scholar
  26. 26.
    J. Song, Y. Zhang, W. Zhang, J. Chen, X. Yang, P. Ma, B. Zhang, B. Liu, J. Ni, and R. Wang (2015). Peptides. 63, 143–149.CrossRefGoogle Scholar
  27. 27.
    J. Thundimadathil (2012). J. Amino. Acids. 2012, 967347.CrossRefGoogle Scholar
  28. 28.
    Z. Krpetić, S. Saleemi, I. A. Prior, V. See, R. Qureshi, and M. Brust (2011). ACS Nano. 5, (6), 5195–5201.CrossRefGoogle Scholar
  29. 29.
    A. Mishra, G. H. Lai, N. W. Schmidt, V. Z. Sun, A. R. Rodriguez, R. Tong, L. Tang, J. Cheng, T. J. Deming, D. T. Kamei, and G. C. Wong (2011). Proc. Natl. Acad. Sci. USA. 108, (41), 16883–16888.CrossRefGoogle Scholar
  30. 30.
    D. Zhang, J. Wang, and D. Xu (2016). J. Control Release. 229, 130–139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ali A. Taha
    • 1
  • Selma M. H. AL-Jawad
    • 2
    Email author
  • Lamyaa F. A. AL-Barram
    • 3
  1. 1.Biotechnology Department, School of Applied SciencesUniversity of TechnologyBaghdadIraq
  2. 2.Applied Physics Department, School of Applied SciencesUniversity of TechnologyBaghdadIraq
  3. 3.Department of Radiology Technology, College of Health and Medical TechnologyMiddle Technical UniversityBaghdadIraq

Personalised recommendations